
THE ENGINEERING PLAYBOOK

From Chaos to Confidence

A Comprehensive Guide to Site Reliability Engineering

9 Parts | 34 One-Pagers | ~8.5 Hours | Technical Track

1

THE JOURNEY AHEAD

Part 1
Foundation &

Vision

Part 2
Observability

Mastery

Part 3
Resilience
Patterns

Part 4
Incident

Excellence

Part 5
Release, Testing

& Capacity

Part 6
Cloud &

Infrastructure

Part 7
AI/ML & Agentic

Ops

Part 8
People & Culture

Part 9
Industry &
Roadmap

2

PART 1 OF 9

SRE Fundamentals, SLIs/SLOs, DORA Metrics, Maturity Assessment

 reliability-unleashed  sre-foundations  dora-24-capabilities  sre-maturity-assessment

3

WHY SRE? WHY NOW?

4+4+
AI Agents

in production

24/724/7
Bot operations

never sleep

100s100s
Daily commits

across worktrees

Bots don't get tired. But they can fail.
And when they do, who responds at 3 AM?

4

DEVOPS VS SRE

class SRE implements

interface DevOps { }

DEVOPS SRE

Philosophy, culture,
movement

→

"Break down silos"→

Continuous delivery
mindset

→

Automation everywhere→

Specific implementation→

Error budgets, SLOs→

Toil reduction targets→

On-call engineering→

"DevOps is the philosophy; SRE is the implementation." — Google

5

THREE PILLARS OF OPERATIONS


REACTIVE

Alert triage & response
Runbook execution
Incident management
Escalation protocols


PROACTIVE

SLO monitoring
Capacity planning
Change management
Toil reduction


PREDICTIVE

Anomaly detection
Chaos engineering
AIOps & ML
Self-healing systems

6

THE VISION: AUTONOMOUS RELIABILITY

"Bots that monitor, diagnose,"Bots that monitor, diagnose,
remediate, and learn — with humansremediate, and learn — with humans
for strategy and novel challenges."for strategy and novel challenges."

70%
Auto-resolved at L1

<15min
MTTR target

99.95%
Availability goal

7

PART 2 OF 9

Three Pillars, OpenTelemetry, Alerting Strategy, High-Cardinality Events

 observability-mastery  multi-window-alerting  use-method-performance  observability-2.0

 alert-tuning-playbook

8

LEARNING FROM INDUSTRY LEADERS



GOOGLE SREGOOGLE SRE
Error budgets,

50% cap



NETFLIXNETFLIX
Chaos

Monkey



AWSAWS
Well-

Architected



METAMETA
SEV culture



SPOTIFYSPOTIFY
Golden paths



TOYOTATOYOTA
Kaizen

9

HIGH-RELIABILITY ORGANIZATIONS
Lessons from Aviation, Nuclear, Healthcare, Military

1 Preoccupation
with Failure

— Never ignore
small failures

2 Reluctance to
Simplify

— Embrace
complexity

3 Sensitivity to
Operations

— Real-time
awareness

4 Commitment to
Resilience

— Detect, contain,
recover

5 Deference to
Expertise

— Empower frontline
decisions

10

AVIATION: CREW RESOURCE MANAGEMENT

Origin: 1978 United Flight 173 — crew ran out of
fuel while troubleshooting

of accidents from human
error, not mechanical
failure

"Up until 1980, we worked on the
concept that the captain was THE
authority. What he said, goes. And we
lost a few airplanes because of that."
— Captain Al Haynes, United 232

Bot Application: Actively seek input from other bots; hierarchical authority yields to expertise

11

NETFLIX: CHAOS ENGINEERING

Philosophy: "Avoid failure by failing constantly"

Chaos
Monkey

Latency
Monkey

Chaos
Gorilla

When AWS lost 10% of
servers (Sept 2014),
Netflix kept running

Bot Application: Regular game days, failure injection testing, resilience as cultural value

12

SCALING RELIABILITY: INDUSTRY EXAMPLES
STRIPE

99.999% uptime
Defensive design

UBER
Millions RPS
Jaeger tracing

SHOPIFY
57.3 PB BFCM
9-mo prep cycle

DISCORD
30M msg/sec

Elixir + ScyllaDB

ROBLOX
145K machines
Cell architecture

CLOUDFLARE
320+ cities

Follow-the-sun

13

LATENCY TIERS: RIGHT-SIZING RELIABILITY

<1ms
ULTRA-LOW
HFT, Gaming

physics

FPGA,
kernel
bypass

1-100ms
LOW

Real-time apps,
APIs

In-memory,
edge

100ms-1s
STANDARD

Web apps,
microservices

CDN,
caching

1-30s
TOLERANT

Batch, analytics

Eventual
consistency

>30s
FLEXIBLE

Background, ML

Offline
processing

14

LESSONS FROM MISSION-CRITICAL INDUSTRIES


SPACE

Triplex redundancy
7K+ engine tests
Formal verification


MILITARY

Disciplined initiative
Decentralized exec
Pre-deployment sim


NUCLEAR

Defense in depth (5)
Diverse redundancy
Safety isolation


DEEP SEA

3 battery buses
180+ monitored
Galvanic failsafe

15

JUST CULTURE: BLAMELESS POST-MORTEMS

OLD VIEW
People cause failure → Punish

NEW VIEW
Error is symptom → Fix system

"Blame closes off avenues for understanding
how and why something happened."

— Sidney Dekker

Ask "what" and "how",
never "why"

16

PART 3 OF 9

Circuit Breakers, Defense in Depth, HRO Principles, Chaos Engineering

 resilience-patterns  defense-in-depth  hro-pattern-recognition  release-it-patterns

 chaos-engineering

17

OUR OBSERVABILITY STACK


COLLECT

Telegraf

OpenTelemetry

Bot
Reporters

→→


STORE

InfluxDB
3.0

Time-
series

DB

BQL
Queries

→→


VISUALIZE

Grafana

Dashboards

Alerting
Rules

→→

 ACT

Slack
Alerts

PagerDuty

Ops
Bot

18

INFLUXDB 3.0 & BQL QUERIES
WHY INFLUXDB? BQL QUERY EXAMPLES

Native time-series
storage

→

High-cardinality support→

Columnar compression→

Sub-second query
latency

→

Downsampling &
retention

→

-- Session success rate
SELECT mean(success_rate)
FROM bot_sessions
WHERE time > now() - 1h
GROUP BY bot_name

-- Error budget burn
SELECT sum(errors) / sum(total)
FROM api_calls
WHERE time > now() - 30d

19

GRAFANA DASHBOARD STRATEGY
 ATHENA SYSTEM

CPU, memory, disk, network

→ SRE Team

 BOT ARMY
Sessions, productivity, commits

→ All Engineers

 BOT OPERATIONS
SLOs, MCP health, error budgets

→ Ops Bot

 HUMAN EXPERIENCE
Focus metrics, escalations

→ Human CEO

Each dashboard serves a specific audience with relevant context

20

DISTRIBUTED TRACING WITH JAEGER

Bot Session 2.3s total

MCP Call (Jira) 450ms

Git Operations 320ms

File I/O 180ms

API Call (Claude) 1.2s ⚠️

Latency breakdown — Where is
time spent?

Error propagation — What caused
the failure?

Dependency mapping — What
calls what?

21

CORRELATION IDS & AGENT CONTEXT

Session ID
sess_abc123

→ Bot Identity claude-
feat

→ Task ID HOME-
456

→ Trace ID
tr_xyz789

CROSS-SIGNAL CORRELATION AUDIT TRAIL

Link metrics → logs → traces→

Find all activity for one
session

→

Reconstruct incident timeline→

Which bot made this change?→

What JIRA ticket triggered it?→

Full provenance chain→

22

CENTRALIZED LOGGING STRATEGY

ERROR
Failures
needing
action

90 days

WARN
Degraded

but
recovering

30
days

INFO
Normal

operations

14
days

DEBUG
Troubleshooting

7 days

 Structured JSON  Correlation IDs  Searchable fields  No secrets

23

ALERTING PHILOSOPHY: SIGNAL VS. NOISE

P1 - PAGE

Service down, data loss risk

Immediate response

P2 - NOTIFY

Degraded, SLO at risk

Within 1 hour

P3 - TRACK

Anomaly detected

Business hours

P4 - LOG

Informational

Review weekly

"Every alert should be actionable. If you
can't act on it, it's noise."

24

USE METHOD: PERFORMANCE ANALYSIS
Brendan Gregg's systematic approach to resource bottlenecks

 UTILIZATION

Average time
resource was busy

CPU: 85%,

Memory: 72%

 SATURATION

Extra work queued
or denied

Queue depth,

wait time

 ERRORS

Count of error
events

ECC errors,

retries, drops

Apply to every resource: CPU, Memory,
Disk I/O, Network, GPUs, API quotas

25

RED METHOD: SERVICE MONITORING
Tom Wilkie's approach for request-driven services

 RATE

Requests per
second

http_requests_total

 ERRORS

Failed requests
per second

5xx responses,

exceptions

 DURATION

Time per request
(latency)

P50, P95, P99

histograms

USE for Resources | RED for Services | Both for Complete Coverage

26

MULTI-WINDOW BURN RATE ALERTING
Burn Rate = How fast you're

consuming error budget

burn_rate = (errors /

window) / (budget /

period)

5 min
Fast Burn
Immediate

outage

>10x → P1

1 hour
Medium Burn
Sustained issues

>5x → P2

6
hours
Slow Burn
Degradation

trend

>2x → P3

From Liz Fong-Jones & Google SRE Workbook

27

PART 4 OF 9

Response & Postmortems, Learning from Catastrophe, Runbook Design

 incident-excellence  learning-from-catastrophe  runbook-quick-reference

28

SLOS AND ERROR BUDGETS
SLI TARGET ERROR BUDGET

Availability 99.5% 3.6 hrs/month

Success
Rate 98.0% 2% failures

Latency P95 <3s 2% slow

MTTR <15min
Agentic

response

Auto-
Resolution 70%

L1 handled by

Ops Bot

>50%
Ship freely

25-50%
Prioritize
reliability

<25%
Feature
freeze

29

OPERATIONAL METRICS: FULL COVERAGE
SYSTEM HEALTH

MCP Availability: 99.9%

Resource Util: <80%

API Headroom: >20%

BOT PRODUCTIVITY
Session Success: >95%

Commits/Session: >3

Stall Rate: <5%

OPERATIONAL TOIL
Manual: <5/wk

Automation: >80%

Alert Noise: <20%

INCIDENT QUALITY
MTTD: <2 min

MTTA: <5 min

Recurrence: <10%

30

INCIDENT LIFECYCLE (ITIL)

1. Identify → 2. Categorize → 3. Prioritize → 4. Respond → 5. Close

SEV1 Critical — <15 min response

SEV2 Major — <1 hour response

SEV3 Minor — <4 hours response

SEV4 Low — <24 hours response

31

BOT-FIRST ESCALATION MODEL


L1: Ops Bot —

Auto-triage,
runbook execution

70%

↓


L2: Bot Team —

Bot-to-bot
coordination

25%

↓


L3: Human Expert
— Complex/novel

issues
5%

32

THE 50% RULE: TOIL REDUCTION

Ops Work
(Max 50%)

Engineering
(Min 50%)

WHAT IS TOIL? AUTOMATION
PRIORITIES

1. Runbook automation
2. Incident triage
3. Deployment pipelines
4. Capacity scaling

Manual, repetitive
work

→

No enduring value→

Scales linearly with
growth

→

Automatable→

33

TESTING FOR RELIABILITY
UNIT TESTS

Fast, isolated

80%+ coverage

INTEGRATION
Component APIs

Critical paths

CHAOS
Failure injection

Prod-like

E2E
Full workflow

Key journeys

Jane Street: "Deterministic simulation testing finds bugs random testing cannot"

34

CHAOS ENGINEERING & GAMEDAYS

1
HYPOTHESIS

Define expected behavior

2
INJECT

Kill process, add latency

3
OBSERVE

Monitor SLOs, alerts

4
LEARN

Fix gaps, document

"Avoid failure by failing constantly" —
Netflix

Chaos Monkey Toxiproxy Gremlin LitmusChaos

35

ON-CALL SUSTAINABILITY

70%
SREs: on-call → burnout

2,000+
Weekly alerts (3% actionable)

GOOGLE'S SUSTAINABLE LIMITS

12h max shift 2 pages/shift 25% time on-call 5-8 per rotation

With bot-first response, humans should rarely be paged

36

BLAMELESS POST-MORTEM PROCESS

1
TIMELINE

→ 2
ROOT CAUSE

→ 3
FACTORS

→ 4
ACTIONS

→ 5
SHARE

>20% budget SEV1/SEV2 Novel failures Near-misses

37

THE THREE WAYS OF DEVOPS
From "The Phoenix Project" and "The DevOps Handbook"

 FIRST WAY: FLOW
Fast flow from Dev to

Ops to Customer

Small batch sizes
Reduce WIP
Eliminate
constraints

 SECOND WAY:
FEEDBACK

Fast, constant
feedback loops

Telemetry
everywhere
Push quality
upstream
Enable fast
recovery

 THIRD WAY:
LEARNING
Continuous

experimentation &
learning

Take risks,
embrace failure
Build mastery
through practice
Institutionalize
improvement

38

OBSERVABILITY: THREE PILLARS + CONTEXT



METRICS
InfluxDB +
Grafana



LOGS
Structured

events



TRACES
Jaeger +

OpenTelemetry



CONTEXT
MCP +

Correlation
IDs

"If you can't monitor a service, you don't know
what's happening, and if you're blind to what's

happening, you can't be reliable."
— Google SRE Book

39

PART 8 OF 9

Westrum Culture, Team Topologies, On-Call Excellence, The Three Ways

 people-culture  oncall-excellence  three-ways-devops  team-topologies

40

BOT ARMY SRE TEAM STRUCTURE


INCIDENT RESPONSE

Ops Bot
Alert triage, runbooks


RELIABILITY ENG

SRE Bot
SLOs, capacity, chaos


OBSERVABILITY

Obs Bot
Dashboards, alerting


SECURITY OPS

Sec Bot
Compliance, audits

41

PART 5 OF 9

DORA Metrics, Progressive Delivery, NALSD, Testing Automation

 capacity-release  nalsd-framework  designing-for-recovery  slo-design-framework

42

PAGERDUTY: THE ON-CALL BACKBONE

Grafana Alerts → PagerDuty →

Slack #bot-alerts

Ops Bot (L1)

JIRA Incident

PAGERDUTY AI AGENTS (2025)

SRE Agent
Auto-classify, remediate

Shift Agent
Schedule conflicts

Scribe Agent
Capture insights

Insights Agent
Data analysis

43

OVERLOAD PROTECTION: CASCADING FAILURE PREVENTION

CIRCUIT BREAKERS
Stop calling failing services

Closed → Open →
Half-
Open

LOAD
SHEDDING

Reject
requests to

protect
system

Priority-
based
queuing
Graceful
degradation
Uber's
Cinnamon
(PID
controller)

BACKPRESSURE
Slow down
upstream
producers

Rate limiting
Queue depth
limits
Timeout
cascades

44

DORA METRICS: MEASURING EXCELLENCE
 DEPLOY FREQ

Low Monthly
Med Weekly
High Daily

Elite On-demand

 LEAD TIME
Low Months
Med Weeks
High Days

Elite <1 hour

 FAILURE RATE
Low >30%
Med 15-30%
High 5-15%

Elite <5%

 MTTR
Low Weeks
Med Days
High <1 day

Elite <1 hour

Elite performers ship faster AND more reliably

45

INDUSTRY SCALE: FROM STARTUP TO HYPERSCALE
Startup

10-100 RPS

Monolith • Manual ops

99.5% SLO

Growth
1K-100K RPS

Microservices • On-call

99.9% SLO

Enterprise
100K-1M RPS

Distributed • Chaos eng

99.95% SLO

Hyperscale
1M+ RPS

Global • Cell-based

99.99%+ SLO

46

UNIVERSAL RELIABILITY PRINCIPLES
Applicable to any mission-critical system

1
LAYERED DEFENSE

Multiple failure barriers

2
GRACEFUL DEGRADATION

Core function survives

3
RAPID RECOVERY

Fast detect-to-resolve

4
CONTINUOUS VERIFY

Prove it works

5
AUTO + GUARDRAILS

Empower within bounds

47

PART 6 OF 9

Kubernetes, Platform Engineering, Cloud-Native SRE, Multi-Cloud

 infrastructure-reliability  kubernetes-patterns  platform-engineering

48

PART 7 OF 9

MLOps, Non-Determinism, Bot Operations, Multi-Agent Systems

 ai-ml-operations  agentic-operations

49

AGENTIC OPERATIONAL WORKFLOWS
1

DETECT
Alert triggered

2
CORRELATE

Query signals

3
DIAGNOSE
AI analysis

4
REMEDIATE

Run playbook

5
LEARN

Refine models

The goal: closed-loop autonomous operations

50

MULTI-AGENT ORCHESTRATION

 Orchestrator

↓ ↓ ↓ ↓


OPS BOT


SRE BOT


OBS BOT


SEC BOT

🎭 Puppeteer 🐝 Swarm 🏛️ Hierarchical

51

DATA STRATEGY FOR AUTONOMOUS AGENTS
REAL-TIME
Last 5 min
metrics
Active alerts
Deployments

HISTORICAL
90-day
incidents
Resolution
patterns
SLO trends

KNOWLEDGE
Runbooks
Architecture
Post-
mortems

THE LEARNING LOOP

Incidents → Analysis → Patterns → Runbooks → Automation

52

SELF-HEALING SYSTEMS


DETECT

Anomaly + SLO burn

→


DECIDE
Pattern + runbook

→

ACT

Scale, restart, rollback

→


VERIFY
SLOs restored

Memory: Auto-restart Latency: Scale up Deploy fail: Rollback

53

PLATFORM ENGINEERING: GOLDEN PATHS

NEW
SERVICE

Template →
CI/CD →

Observability
→ Alerts →

Docs

10 minutes to
production-

ready

BOT
ONBOARDING

Identity →
Worktree →

MCP →
Permissions →

SLOs

Self-service,
automated

INCIDENT
RESPONSE

Alert →
Runbook →
Resolution

→ Post-
mortem

Guided
workflow,

minimal toil

"A golden path is a paved road to a well-architected production deployment" —
Spotify

Make the right thing the easy thing

54

ATHENA → CLOUD: ENVIRONMENT PORTABILITY
ATHENA (ON-PREM)

InfluxDB + Grafana

Jaeger local Low latency

Full control

PUBLIC CLOUD (AWS/GCP)

Managed services

Auto-scaling Global edge

Shared responsibility

OpenTelemetry GitOps + IaC Grafana Cloud Env-agnostic
Abstraction Deployment Observability Config

55

DEPLOYMENT AUTOMATION: BLEEDING EDGE
GITOPS PIPELINE

Declarative IaC
(Terraform)
ArgoCD / Flux sync
PR-based deployments

PROGRESSIVE DELIVERY
Canary releases (1-5%)
SLO-gated rollouts
Auto-rollback on error

FEATURE FLAGS
Decouple deploy/release
A/B testing built-in
Instant kill switches

OBSERVABILITY CI
Pre-deploy SLO checks
Synthetic monitoring
Chaos validation

Target: Zero-touch deployments with bot-driven validation and rollback

56

PART 9 OF 9

Google, Netflix, NASA, Automation Paradoxes, SRE Evolution, Getting Started

 industry-leaders  implementation-roadmap  automation-paradoxes  sre-evolution-timeline

57

IMPLEMENTATION ROADMAP

1
FOUNDATION

Alerting, playbooks

2
RELIABILITY

SLOs, GameDays

3
AUTOMATION
Self-healing

4
INTELLIGENCE
ML, prediction

5
EXCELLENCE

Cloud, 99.95%

58

AUTOMATION PARADOXES
Bainbridge's "Ironies of Automation" (1983)

SKILL DECAY
Operators
lose skills.

Can't step in
when

automation
fails.

COMPLACENCY
Reduced
vigilance.
Failures
become

catastrophic.

CLUMSY
AUTO

Workload
increases

during high-
stress

moments.

MITIGATION
Regular

drills,
transparent
automation,

graceful
degradation.

"The more advanced the automation, the more
crucial the human contribution"

59

SRE EVOLUTION TIMELINE

2003

Google creates
SRE role

2010

Netflix Chaos
Monkey

2016

SRE Book
published

2018

SRE Workbook
OpenTelemetry

2023+

AI/ML Ops
Agentic SRE

Past
Manual ops → Automation

Present
Platform Engineering

Future
Autonomous Reliability

60

KEY TAKEAWAYS

1
Speed &
Stability

Reinforce
DORA proves

elite orgs do both

2
Error Budgets

Balance
Quantified risk
tolerance for
innovation

3
Build for
Failure

Resilience is
designed, not

accidental

4
Automate Toil
<50% cap frees

humans for
engineering

5
Incidents Are
Investments

Every failure
makes systems

stronger

6
Observability
> Monitoring

Understand
systems, not just

alert

61

QUESTIONS?

34 One-Pagers Available: Comprehensive reference material for each topic

SRE Foundations | Observability | Resilience | Incidents | Release & Capacity
Cloud & Infrastructure | AI/ML & Agentic | People & Culture | Industry Leaders

Essential Reading
Google SRE Book
Netflix Tech Blog

Dekker's Just Culture

Next Steps
Review one-pagers

Assess maturity level
Build your roadmap

62

