
Bot Army Engineering | Assessment Guide View Rubrics | Scoring Worksheet v1.0.0

SRE Maturity Assessment Guide
Instructions for Interactive and Offline Assessment

Bot Army Engineering | Assessment Toolkit v1.0

15
DOMAINS

75
QUESTIONS

450
MAX POINTS

30
MINUTES

5 MATURITY LEVELS

LEVEL NAME SCORE AVG/DOMAIN

1 Ad-hoc 0-90 0-6

2 Foundational 91-180 7-12

3 Standardized 181-270 13-18

4 Advanced 271-360 19-24

5 Optimized 361-450 25-30

INTERACTIVE ASSESSMENT

1. Prepare: Gather 2-4 team members, block 30-45 min→

2. Start: Open Interactive Assessment, enter team name→

3. Answer: Score each question 0-6 honestly→

4. Review: Check radar chart and domain breakdown→

5. Export: Save JSON for historical tracking→

OFFLINE PDF ASSESSMENT

1. Print: Scoring worksheet + domain rubrics→

2. Gather: Same team prep as interactive→

3. Score: Use rubrics, record on worksheet→

4. Calculate: Sum domain totals (max 450)→

5. Identify: Circle domains below 13 points→

SCORING GUIDE

SCORE MEANING

0 Not practiced at all

2 Minimal/ad-hoc practice

3 Partial implementation

5 Strong implementation

6 Exemplary/industry-leading

AFTER THE ASSESSMENT

1. Share: Results with team and stakeholders→

2. Identify: Top 3 gaps (lowest scoring domains)→

3. Review: Rubrics for those domains→

4. Read: Improvement playbooks for guidance→

5. Plan: Create action items with owners→

ASSESSMENT CADENCE

ACTIVITY FREQUENCY

Full assessment Quarterly

Progress review Monthly

Action tracking Weekly

Stakeholder report Quarterly

COMMON MISTAKES

Scoring aspirations instead of reality→

Ignoring evidence for high scores→

Rushing without team discussion→

Skipping domains that "don't apply"→

BOT ARMY OWNERSHIP

TEAM DOMAINS

SRE Bot 1, 6, 7, 8, 9, 11, 15

Ops Bot 4, 5, 12

Observability 2, 3

Security Bot 13

All Teams 10, 14

Measure to Improve

Target Level 3+ for all critical services.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/index.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/templates/offline-scoring-worksheet.html

SRE Maturity Assessment Questions
Complete Question Reference for Offline Assessment

0
Not Practiced

2
Basic/Reactive

3
Defined

5
Measured

6
Optimized

01SLOs & Error Budgets
Q1. How well-defined are your Service Level Indicators (SLIs)?
0No SLIs defined | 2Informal metrics tracked ad-hoc | 3SLIs defined for
some services | 5Comprehensive SLIs for all critical services | 6User-
journey based SLIs with clear measurement methodology
Q2. How do you track and enforce error budgets?
0No error budget concept | 2Error budgets calculated but not enforced |
3Error budgets tracked with manual reviews | 5Automated burn rate alerts
with policy enforcement | 6Multi-window burn rates with automated
feature freezes
Q3. How aligned are stakeholders on SLO targets?
0No stakeholder awareness of SLOs | 2Engineering aware, business not
involved | 3SLOs documented and shared with stakeholders | 5Business
and engineering co-own SLO targets | 6SLOs embedded in contracts and
product decisions
Q4. What happens when error budget is exhausted?
0Nothing, we don't track error budgets | 2Manual discussions, no formal
process | 3Documented escalation process | 5Automatic feature freeze,
reliability focus | 6Proactive budget management prevents exhaustion
Q5. How do you review and iterate on SLOs?
0SLOs never reviewed | 2Reviewed when issues occur | 3Quarterly
reviews scheduled | 5Regular reviews with customer feedback integration |
6Continuous refinement based on user journey analysis

02Observability
Q1. How comprehensive is your metrics coverage?
0Ad-hoc metrics; no consistent approach across services | 2System
metrics (CPU/mem/disk) covered; app metrics ad-hoc | 3RED/USE
methods adopted for critical services | 5Comprehensive coverage;
consistent standards across services | 6All services with golden signals;
consistent naming/labels
Q2. How mature is your logging infrastructure?
0Logs only on local disk, grep to debug | 2Some centralized logging,
unstructured | 3Centralized structured logging with search | 5Structured
logs with correlation IDs and retention policies | 6Intelligent log analysis
with anomaly detection
Q3. How well do you implement distributed tracing?
0No distributed tracing | 2Tracing in some services, not correlated | 3End-
to-end tracing for critical paths | 5Full tracing with service maps and
latency analysis | 6Continuous profiling integrated with tracing
Q4. How effective are your dashboards?
0No dashboards or ad-hoc only | 2Basic dashboards, often outdated |
3Service-level dashboards maintained | 5Golden signals dashboard per
service with SLO tracking | 6Self-service dashboard platform with
templates
Q5. Can you correlate signals across metrics, logs, and traces?
0Signals completely siloed | 2Manual correlation via timestamps | 3Some
tooling for correlation | 5Unified observability platform with correlation |
6AI-assisted root cause analysis across signals

03Alerting Strategy
Q1. What percentage of your alerts are actionable?
0Unknown or mostly noise | 2Less than 50% actionable | 350-80%
actionable | 580-95% actionable, regular tuning | 6>95% actionable,
continuous improvement
Q2. How are alerts linked to runbooks?
0No runbooks exist | 2Some runbooks, not linked from alerts | 3Runbooks
linked for critical alerts | 5All alerts link to runbooks, regularly updated |
6Runbooks with automation hooks and versioning
Q3. How do you tune alert thresholds?
0Set once, never tuned | 2Tuned reactively after complaints | 3Quarterly
review of noisy alerts | 5Data-driven tuning with noise metrics |
6Automated threshold adjustment based on patterns
Q4. Do alerts correlate with SLO burn rates?
0No SLO-based alerting | 2Basic threshold alerts only | 3Single-window
burn rate alerts | 5Multi-window burn rate alerts (fast + slow) | 6Predictive
alerting before budget exhaustion
Q5. How do you manage alert escalation?
0No escalation process | 2Informal escalation via chat/phone |
3Documented escalation paths | 5Automated escalation with on-call
integration | 6Intelligent routing based on context and expertise
04 Incident Response
Q1. How well-defined is your Incident Commander (IC) role?
0No IC role, whoever is available | 2Informal IC, not always assigned | 3IC
role defined, rotation exists | 5Trained ICs, clear handoff procedures | 6IC
certification program, regular drills
Q2. How do you track MTTD/MTTR?
0Not tracked | 2Ad-hoc calculations (spreadsheets, after-the-fact) |
3Incident system with manual timestamp entry | 5Automated capture from
alerts and monitoring | 6Real-time dashboards with trend analysis
Q3. How do you conduct postmortems?
0No postmortems | 2Ad-hoc reviews for major incidents | 3Blameless
postmortems with template | 5Postmortems with tracked action items |
6Learning reviews shared org-wide, patterns analyzed
Q4. How effective are your escalation paths?
0No defined escalation | 2Escalation exists but often unclear |
3Documented escalation matrix | 5Tested escalation with clear SLAs |
6Automated escalation with fallback procedures
Q5. How do you train incident responders?
0No training, learn by doing | 2Informal shadowing | 3Onboarding training
exists | 5Regular game days and tabletop exercises | 6Certification
program with continuous learning
05On-Call Health
Q1. What percentage of time is spent on on-call work?
0>50% of time on reactive work | 235-50% reactive | 325-35% reactive |
5<25% reactive, rest proactive | 6<15% reactive, highly automated
Q2. How many pages require response per on-call shift?
0>10 pages per shift | 25-10 pages per shift | 32-5 pages per shift | 5<2
pages per shift | 6<1 page per shift; mostly proactive
Q3. How is on-call duty recognized and compensated?
0No policy; on-call expected without recognition | 2Informal; varies by
manager or team | 3Documented policy with time-off or pay | 5Clear policy
with pay, time-off, and flexibility | 6Competitive compensation; on-call
valued
Q4. How do you track on-call health metrics?
0Not tracked | 2Anecdotal feedback only | 3Basic metrics (pages, hours) |
5Comprehensive dashboard with trends | 6Health metrics tied to
improvement goals
Q5. How do you prevent burnout?
0Burnout is common, no prevention | 2React when people complain |
3Rotation policies, some flexibility | 5Proactive monitoring, load balancing |
6Sustainable by design, team satisfaction high

06Reliability Patterns
Q1. How do you implement circuit breakers?
0No circuit breakers | 2Ad-hoc implementation in some services |
3Standard library used for critical paths | 5All external calls protected,
monitored | 6Adaptive circuit breakers with auto-tuning
Q2. How standardized are timeouts and retries?
0No timeouts, or infinite waits | 2Inconsistent timeouts across services |
3Standard timeout policy documented | 5Exponential backoff with jitter
everywhere | 6Context-aware adaptive timeouts
Q3. Do you isolate resources to prevent cascading failures?
0No resource isolation; shared everything | 2Some isolation, not
systematic | 3Critical services have dedicated resources | 5Systematic
isolation per dependency | 6Dynamic isolation that adjusts to load
Q4. How do you handle graceful degradation?
0All-or-nothing failures | 2Some fallbacks, not systematic | 3Degradation
modes documented | 5Automatic degradation with user communication |
6Feature flags enable instant degradation
Q5. How do you prevent cascading failures?
0Cascading failures happen regularly | 2Some awareness, reactive fixes |
3Load shedding for critical services | 5Comprehensive protection at all
layers | 6Automatic blast radius containment
07Capacity & Performance
Q1. How do you monitor utilization and saturation?
0Not monitored | 2Basic CPU/memory only | 3USE method for critical
resources | 5Comprehensive USE dashboards with alerts | 6Predictive
capacity analysis
Q2. How mature is your autoscaling?
0No autoscaling, manual only | 2Basic CPU-based autoscaling | 3Custom
metrics-based autoscaling | 5Predictive scaling with business signals |
6ML-driven proactive scaling
Q3. How often do you load test?
0Never or rarely | 2Ad-hoc; only when issues arise | 3Planned (scheduled
or before releases) | 5Automated in CI/CD | 6Continuous with trend
analysis
Q4. Do you have capacity models?
0No capacity planning | 2Gut feel; no documented approach |
3Documented models for critical services | 5Data-driven models updated
regularly | 6Automated capacity forecasting
Q5. How do you forecast demand?
0No forecasting | 2Ad-hoc estimates | 3Historical trend analysis |
5Integrated with business planning | 6ML-based demand prediction

08Release Engineering
Q1. How mature is your CI/CD pipeline?
0Manual builds and deployments | 2Basic CI, manual CD | 3Full CI/CD for
most services | 5Standardized pipelines with quality gates | 6Self-service
platform with guardrails
Q2. How do you implement canary releases?
0Big bang releases only | 2Gradual rollout; ad-hoc monitoring |
3Canary/baseline comparison; manual promotion | 5Automated promotion
based on SLOs | 6Progressive delivery with auto-rollback
Q3. What are your DORA metrics?
0Not tracked | 2Low performer (monthly deploys, >6mo lead time) |
3Medium (weekly deploys, 1-6mo lead time) | 5High (daily deploys, <1
week lead time) | 6Elite (on-demand deploys, <1 day lead time)
Q4. How fast can you rollback?
0Rollback not possible or hours | 230-60 minutes | 310-30 minutes | 5<5
minutes, one-click | 6Automatic rollback on SLO breach
Q5. How do you use feature flags?
0No feature flags | 2Ad-hoc flags in code | 3Feature flag system for new
features | 5Comprehensive flag management with targeting | 6Flags
integrated with experiments and metrics
09Toil & Automation
Q1. What percentage of time is spent on toil?
0>50% toil | 235-50% toil | 325-35% toil | 5<25% toil | 6<10% toil, mostly
engineering
Q2. How mature is your Infrastructure as Code?
0ClickOps, manual provisioning | 2Some IaC, not comprehensive | 3IaC for
new infrastructure | 5Full IaC with GitOps workflow | 6IaC with policy as
code and drift detection
Q3. How much can developers do without waiting on ops?
0Tickets required for everything | 2Some self-service; most needs require
tickets | 3Common daily tasks are self-service | 5Developer portal with
golden paths | 6Full platform with self-healing
Q4. How do you track and prioritize toil reduction?
0Toil not tracked | 2Anecdotal awareness | 3Toil tracked, backlog exists |
5Dedicated time for automation (20%) | 6Toil elimination is a team OKR
Q5. How automated are routine operations?
0Mostly manual | 2Scripts exist, not maintained | 3Key operations
automated | 5Comprehensive automation platform | 6AI-assisted
autonomous operations

10Culture & Organization
Q1. How blameless are your postmortems?
0Blame culture, people punished | 2Lip service to blameless | 3Genuinely
blameless most times | 5Blameless culture, focus on systems | 6Failures
celebrated as learning opportunities
Q2. Is psychological safety present?
0Fear of speaking up | 2Varies by team/manager | 3Generally safe to raise
concerns | 5High safety, concerns welcomed | 6Proactive seeking of
diverse perspectives
Q3. How well do teams collaborate?
0Siloed, competitive | 2Collaboration when forced | 3Regular cross-team
interaction | 5Embedded SREs, shared ownership | 6Generative culture
(Westrum)
Q4. How is knowledge shared?
0Tribal knowledge, silos | 2Documentation exists, outdated | 3Regular
knowledge sharing sessions | 5Learning culture, communities of practice |
6Organization-wide learning system
Q5. How is reliability ownership distributed?
0Ops/SRE owns all reliability | 2Developers aware but not responsible |
3Shared on-call between dev and SRE | 5You build it, you run it |
6Reliability embedded in all teams

11Chaos Engineering
Q1. How often do you run automated fault injection?
0Never | 2Ad-hoc; only after major incidents | 3Planned experiments in
staging | 5Regular in staging; periodic in production | 6Continuous
automated chaos in production
Q2. How do you control blast radius?
0No controls, hope for the best | 2Manual safeguards | 3Documented blast
radius limits | 5Automated abort conditions | 6Intelligent blast radius with
auto-scaling
Q3. Do you run game days or wargaming exercises?
0No organizational exercises | 2Informal tabletop discussions | 3Annual
scheduled exercises | 5Quarterly with cross-team scenarios | 6Regular full
incident simulations
Q4. How do you apply learnings from chaos?
0Findings ignored | 2Ad-hoc follow-up | 3Findings tracked, some fixed |
5All findings tracked with SLAs | 6Continuous improvement from chaos
insights
Q5. What chaos tooling do you use?
0No tooling | 2Manual scripts | 3Basic chaos tools (kill pods, etc.) |
5Comprehensive platform (Gremlin, LitmusChaos) | 6Custom platform
integrated with observability
12Disaster Recovery
Q1. Are your disaster recovery targets defined and validated?
0No defined recovery targets | 2Targets defined; never tested | 3Targets
defined; tested occasionally | 5Regularly validated; meets targets |
6Continuously validated; exceeds targets
Q2. How do you verify backups are restorable?
0Never tested | 2Only tested when issues occur | 3Occasional restore
tests | 5Regular tests with data verification | 6Automated continuous
validation
Q3. How do you test failover?
0Failover never tested | 2Tested once, years ago | 3Annual DR drills |
5Quarterly failover tests | 6Regular active-active failover
Q4. Do you have multi-region capability?
0Single region only | 2Cold standby in another region | 3Warm standby
with manual failover | 5Hot standby with automated failover | 6Active-
active multi-region
Q5. How automated is recovery?
0Fully manual, tribal knowledge | 2Documented runbooks | 3Partially
automated | 5Mostly automated with one-click recovery | 6Self-healing
with automatic recovery

13Security Reliability
Q1. How do you manage secrets?
0Secrets in source code or env vars | 2Basic secrets storage, manual
rotation | 3Secrets vault with access control | 5Dynamic secrets with auto-
rotation | 6Zero-trust secrets with audit logging
Q2. How are certificates managed?
0Manual renewal, outages from expiry | 2Calendar reminders for renewal |
3Automated monitoring of expiry | 5Auto-renewal (cert-manager, ACME) |
6Short-lived certs with continuous rotation
Q3. How do you scan for vulnerabilities?
0No scanning | 2Ad-hoc scans | 3Scheduled scans, manual remediation |
5CI/CD integrated scanning with blocking | 6Continuous scanning with
auto-remediation
Q4. How often do you rotate credentials?
0Never or when compromised | 2Annually | 3Quarterly | 5Monthly or on-
demand | 6Continuous rotation (short-lived)
Q5. How do you handle security incidents?
0No security incident process | 2Ad-hoc response | 3Security incident
runbooks exist | 5Dedicated security incident response team | 6Automated
detection and response (SOAR)
14Documentation
Q1. How current is your architecture documentation?
0No architecture docs | 2Outdated diagrams | 3Docs exist, updated
occasionally | 5Current docs, reviewed quarterly | 6Auto-generated from
code/infra
Q2. Do runbooks exist for all alerts?
0No runbooks | 2Runbooks for some alerts | 3Runbooks for critical alerts |
5All alerts have runbooks | 6Executable runbooks with automation
Q3. How do you track architecture decisions?
0No record of decisions | 2Decisions in chat/email | 3Some ADRs written |
5ADR process followed consistently | 6ADRs linked to code and
searchable
Q4. How do you keep docs up-to-date?
0Docs abandoned after creation | 2Updated when someone notices issues
| 3Review cadence exists | 5Docs as code in PRs | 6Automated freshness
checks
Q5. Can new team members onboard via docs?
0Heavy reliance on shadowing | 2Some docs, mostly tribal knowledge |
3Onboarding guide exists | 5Self-service onboarding possible |
6Comprehensive onboarding with exercises

15Dependency Management
Q1. Do you have a complete service map?
0No service map | 2Partial, outdated map | 3Manual service map
maintained | 5Auto-discovered service map | 6Real-time dependency
graph with health
Q2. How do you track vendor SLAs?
0Vendor SLAs unknown | 2SLAs known but not monitored | 3Major
vendors monitored | 5All vendors tracked with dashboards | 6SLA
compliance automated with alerts
Q3. How do you monitor dependency health?
0No dependency monitoring | 2Manual checks or vendor status pages |
3Health endpoints monitored | 5Comprehensive dependency dashboard |
6Predictive dependency health analysis
Q4. What's your strategy for vendor outages?
0No strategy, wait for vendor | 2Manual workarounds | 3Documented
fallback procedures | 5Automated failover to alternatives | 6Multi-vendor
redundancy by default
Q5. How do you manage library dependencies?
0Dependencies not tracked | 2Manual review occasionally | 3Automated
vulnerability scanning | 5Automated updates with testing | 6Dependency
governance with policies

Bot Army Engineering | SRE Maturity Assessment Questions Reference | 15 Domains × 5 Questions = 75 Total

Team: _________________ Date: _________________ Assessors: _________________

Bot Army Engineering | Scoring Worksheet Domain Rubrics | Full Guide Print-Ready Form

SRE Maturity Scoring Worksheet
Offline Assessment Form - Print and Complete

Bot Army Engineering | Assessment Toolkit

SCORING GRID (5 QUESTIONS PER DOMAIN, 0-6 POINTS EACH)

DOMAIN Q1 Q2 Q3 Q4 Q5 TOTAL LEVEL NOTES

1 SLOs & Error Budgets /30

2 Observability /30

3 Alerting Strategy /30

4 Incident Response /30

5 On-Call Health /30

6 Reliability Patterns /30

7 Capacity & Performance /30

8 Release Engineering /30

9 Toil & Automation /30

10 Culture & Organization /30

11 Chaos Engineering /30

12 Disaster Recovery /30

13 Security Reliability /30

14 Documentation /30

15
Dependency

Management
/30

TOTAL SCORE: /450 Maturity Level:

MATURITY LEVELS

LEVEL NAME SCORE

1 Ad-hoc 0-90

2 Foundational 91-180

3 Standardized 181-270

4 Advanced 271-360

5 Optimized 361-450

QUESTION SCORING

SCORE MEANING

0 Not practiced

2 Minimal/ad-hoc

3 Partial implementation

5 Strong implementation

6 Exemplary

TOP 3 PRIORITY GAPS

1. Domain: __________ Score: ____ Action: ____________________→

2. Domain: __________ Score: ____ Action: ____________________→

3. Domain: __________ Score: ____ Action: ____________________→

NEXT STEPS

Review rubrics for low-scoring domains→

Read improvement playbooks→

Create action items with owners→

Schedule quarterly reassessment→

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/index.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/assessment-guide.html

Bot Army Engineering | SRE Maturity Rubric All Rubrics | Next: Observability Domain 1 of 15

Domain 1: SLOs & Error Budgets
Service Level Objectives and Error Budget Management

SRE Bot | Foundations | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1
No formal SLOs; availability discussed informally; no error

budgets

2
Basic SLOs for some services; not consistently tracked; no

budget enforcement

3
SLOs for critical services; error budgets calculated; basic burn

rate monitoring

4
Comprehensive SLOs; budgets enforced; dev slowdowns when

budget exhausted

5
SLOs drive all decisions; multi-window burn rates; automated

freezes

ASSESSMENT QUESTIONS

QUESTION MAX

1 How well-defined are your SLIs? 6

2 How do you track/enforce error budgets? 6

3 How aligned are stakeholders on SLO targets? 6

4 What happens when error budget exhausted? 6

5 How do you review and iterate on SLOs? 6

FOCUS AREAS

SLI Definition: User-journey based indicators with clear measurement→

SLO Targets: Realistic, stakeholder-aligned availability goals→

Error Budget Policy: Clear consequences for budget violations→

Stakeholder Alignment: Business and engineering co-ownership→

ANTI-PATTERNS (RED FLAGS)

Setting 100% availability targets (impossible, expensive)→

SLOs without error budget policies→

Engineering-only SLOs, no business alignment→

No consequence for budget violations→

Static SLOs that never evolve→

EVIDENCE CHECKLIST

SLO documentation exists and is up-to-date→

Error budget dashboards visible to stakeholders→

Historical SLO compliance data available→

Error budget policy with escalation process→

Evidence of SLO-driven prioritization decisions→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Observability SLIs require metrics/logs infrastructure

Alerting Burn rate alerts drive incident response

Release Eng Error budgets gate feature releases

Error Budgets Enable Velocity

Managed risk, not zero risk.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/index.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-02-observability.html

Bot Army Engineering | SRE Maturity Rubric Prev: SLOs | Next: Alerting Domain 2 of 15

Domain 2: Observability
Metrics, Logs, Traces, and Dashboards

Observability Bot | Observability | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Minimal logging; no centralized metrics; debugging via SSH

2 Basic metrics/logs; some dashboards; siloed per team

3
Centralized observability stack; standard dashboards; basic

tracing

4 Full pillars (metrics, logs, traces); correlation; self-service

5 Exemplars, continuous profiling; AI-assisted analysis

ASSESSMENT QUESTIONS

QUESTION MAX

1 How comprehensive is your metrics coverage? 6

2 How mature is your logging infrastructure? 6

3 How well do you implement distributed tracing? 6

4 How effective are your dashboards? 6

5 Can you correlate across signals? 6

FOCUS AREAS

Metrics: RED/USE methods, cardinality management→

Logs: Structured logging, centralized aggregation→

Traces: Distributed tracing, context propagation→

Dashboards: Service-oriented, actionable visualizations→

ANTI-PATTERNS (RED FLAGS)

Debugging production via SSH→

Metrics without context (no labels/tags)→

Logs without structured fields→

Dashboard sprawl with no ownership→

Observability as afterthought→

EVIDENCE CHECKLIST

Centralized metrics platform (Prometheus, Datadog, etc.)→

Log aggregation with search capability→

Tracing enabled for critical paths→

Service-level dashboards exist→

Runbooks link to relevant dashboards→

RELATED DOMAINS

DOMAIN RELATIONSHIP

SLOs SLIs derive from observability data

Alerting Alerts query observability backend

Incidents Dashboards critical for diagnosis

Observe, Don't Guess

Data-driven debugging at scale.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-01-slos.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-03-alerting.html

Bot Army Engineering | SRE Maturity Rubric Prev: Observability | Next: Incidents Domain 3 of 15

Domain 3: Alerting Strategy
Actionable Alerts and Runbooks

Observability Bot | Observability | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Few alerts; mostly noisy; no runbooks; alert fatigue common

2 Basic alerts exist; high noise ratio; some documentation

3 SLO-based alerts; runbooks linked; regular tuning

4 Multi-window burn rates; <5% noise; automated tuning

5 Self-healing alerts; ML anomaly detection; proactive

ASSESSMENT QUESTIONS

QUESTION MAX

1 What % of alerts are actionable? 6

2 How are alerts linked to runbooks? 6

3 How do you tune alert thresholds? 6

4 Do alerts correlate with SLO burn rates? 6

5 How do you manage alert escalation? 6

FOCUS AREAS

Actionability: Every alert should have a clear action→

SLO-Based: Alert on error budget burn, not thresholds→

Runbooks: Documented response procedures→

Tuning: Regular noise reduction reviews→

ANTI-PATTERNS (RED FLAGS)

Alerting on causes, not symptoms→

>20% non-actionable alerts→

No runbooks or outdated runbooks→

Alert storms during incidents→

Alerts ignored due to fatigue→

EVIDENCE CHECKLIST

Alert actionability metrics tracked→

Runbooks exist for all critical alerts→

Alert noise ratio <20%→

Multi-window burn rate alerts configured→

Regular alert review cadence→

RELATED DOMAINS

DOMAIN RELATIONSHIP

SLOs Burn rate alerts derive from SLOs

Observability Alerts query observability data

On-Call Alert quality affects on-call health

Alert on Symptoms

Every page should require human action.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-02-observability.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-04-incident-response.html

Bot Army Engineering | SRE Maturity Rubric Prev: Alerting | Next: On-Call Domain 4 of 15

Domain 4: Incident Response
Incident Command, Escalation, and Resolution

Ops Bot | Operations | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Chaotic response; no IC role; hero culture; no learning

2 Basic severity levels; some escalation paths; informal IC

3 Defined IC role; runbooks used; postmortems written

4 Trained ICs; MTTD/MTTR tracked; blameless culture

5 Incident learning system; automated mitigation; chaos drills

ASSESSMENT QUESTIONS

QUESTION MAX

1 How well-defined is your IC role? 6

2 How do you track MTTD/MTTR? 6

3 How do you conduct postmortems? 6

4 How effective are escalation paths? 6

5 How do you train incident responders? 6

FOCUS AREAS

IC Role: Clear ownership during incidents→

Escalation: Defined paths with contact info→

Metrics: MTTD, MTTR, incident frequency→

Learning: Blameless postmortems with actions→

ANTI-PATTERNS (RED FLAGS)

Hero culture (same person always responds)→

Blame-focused incident reviews→

No severity classification→

Postmortem actions never completed→

Escalation unclear or broken→

EVIDENCE CHECKLIST

IC rotation schedule exists→

Severity levels defined with examples→

Escalation matrix documented→

Postmortem template in use→

MTTD/MTTR dashboards available→

RELATED DOMAINS

DOMAIN RELATIONSHIP

On-Call On-call handles initial response

Alerting Alerts trigger incident flow

Culture Blameless culture enables learning

Incidents Are Learning Events

Every outage makes us stronger.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-03-alerting.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-05-oncall-health.html

Bot Army Engineering | SRE Maturity Rubric Prev: Incidents | Next: Reliability Domain 5 of 15

Domain 5: On-Call Health
Sustainable On-Call and Burnout Prevention

Ops Bot | Operations | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Burnout common; no rotation; >50% time reactive

2 Basic rotation; frequent paging; compensation unclear

3 Regular rotation; <25% time on-call; comp policy exists

4 <2 incidents/shift; health tracked; follow-the-sun

5 Proactive on-call; minimal paging; team satisfaction high

ASSESSMENT QUESTIONS

QUESTION MAX

1 What % of time is spent on-call work? 6

2 How many incidents per on-call shift? 6

3 Is on-call compensation clear? 6

4 How do you track on-call health metrics? 6

5 How do you prevent burnout? 6

FOCUS AREAS

Rotation: Fair distribution, follow-the-sun if global→

Workload: <25% time, <2 incidents/shift target→

Compensation: Clear policy, time-off for pages→

Health: Burnout tracking, satisfaction surveys→

ANTI-PATTERNS (RED FLAGS)

Same people always on-call→

>5 incidents per shift average→

No compensation for pages→

High turnover due to burnout→

On-call seen as punishment→

EVIDENCE CHECKLIST

On-call rotation schedule published→

Incidents per shift tracked (<2 target)→

Compensation policy documented→

Team satisfaction surveys conducted→

Handoff procedures documented→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Alerting Alert quality affects paging load

Incidents Incident volume drives on-call stress

Culture Healthy culture supports on-call

Sustainable Operations

<25% time, <2 incidents/shift.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-04-incident-response.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-06-reliability-patterns.html

Bot Army Engineering | SRE Maturity Rubric Prev: On-Call | Next: Capacity Domain 6 of 15

Domain 6: Reliability Patterns
Circuit Breakers, Retries, Timeouts, Bulkheads

SRE Bot | Resilience | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 No defensive patterns; cascading failures common

2 Basic timeouts in some services; retry logic ad-hoc

3 Circuit breakers for critical paths; standardized timeouts

4 Bulkheads, load shedding; graceful degradation

5 Adaptive patterns; self-healing; antifragile design

ASSESSMENT QUESTIONS

QUESTION MAX

1 How do you implement circuit breakers? 6

2 How standardized are timeouts/retries? 6

3 Do you use bulkhead isolation? 6

4 How do you handle graceful degradation? 6

5 How do you prevent cascading failures? 6

FOCUS AREAS

Circuit Breakers: Fail fast when dependencies unhealthy→

Timeouts: Bounded wait times for all calls→

Retries: Exponential backoff with jitter→

Bulkheads: Isolate failure domains→

ANTI-PATTERNS (RED FLAGS)

No timeouts (infinite waits)→

Retry storms (no backoff)→

All-or-nothing failures→

Cascading failures across services→

No graceful degradation paths→

EVIDENCE CHECKLIST

Circuit breaker library in use (Hystrix, resilience4j)→

Timeout policy documented→

Retry strategy with backoff implemented→

Load shedding mechanisms exist→

Graceful degradation tested→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Chaos Eng Test patterns via chaos experiments

Dependencies Patterns protect from dep failures

Capacity Load shedding prevents overload

Design for Failure

Assume everything will fail.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-05-oncall-health.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-07-capacity.html

Bot Army Engineering | SRE Maturity Rubric Prev: Reliability | Next: Release Domain 7 of 15

Domain 7: Capacity & Performance
USE Method, Load Testing, Autoscaling

SRE Bot | Resilience | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 No capacity planning; reactive scaling; no load testing

2 Basic monitoring; manual scaling; occasional load tests

3 USE method applied; autoscaling configured; regular tests

4 Capacity models; predictive scaling; continuous perf tests

5 ML-based forecasting; cost-optimized; real-time adaptation

ASSESSMENT QUESTIONS

QUESTION MAX

1 How do you monitor utilization/saturation? 6

2 How mature is your autoscaling? 6

3 How often do you load test? 6

4 Do you have capacity models? 6

5 How do you forecast demand? 6

FOCUS AREAS

USE Method: Utilization, Saturation, Errors→

Load Testing: Regular stress tests in CI/CD→

Autoscaling: Horizontal scaling with proper signals→

Forecasting: Demand prediction for planning→

ANTI-PATTERNS (RED FLAGS)

Scaling only when pages fire→

No load testing before releases→

Unknown system limits→

Over-provisioned for "safety"→

No performance budgets→

EVIDENCE CHECKLIST

USE method dashboards for all services→

Autoscaling policies configured→

Load testing in CI/CD pipeline→

Performance regression tests exist→

Capacity planning documentation→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Observability USE metrics from observability

Reliability Load shedding at capacity limits

Release Eng Perf tests gate releases

Know Your Limits

Measure, model, scale proactively.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-06-reliability-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-08-release-engineering.html

Bot Army Engineering | SRE Maturity Rubric Prev: Capacity | Next: Toil Domain 8 of 15

Domain 8: Release Engineering
CI/CD, Canary Deployments, DORA Metrics

SRE Bot | Release | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Manual deployments; release days are stressful; no rollback

2 Basic CI; some CD; deployments weekly/monthly

3 Full CI/CD; canary deployments; DORA metrics tracked

4 Elite DORA metrics; automated rollback; feature flags

5 Continuous deployment; zero-downtime; progressive delivery

ASSESSMENT QUESTIONS

QUESTION MAX

1 How mature is your CI/CD pipeline? 6

2 How do you implement canary releases? 6

3 What are your DORA metrics? 6

4 How fast can you rollback? 6

5 How do you use feature flags? 6

FOCUS AREAS

DORA: Frequency, lead time, MTTR, change fail rate→

Canary: Progressive rollout with auto-rollback→

Feature Flags: Decouple deploy from release→

Rollback: <5 minute recovery capability→

ANTI-PATTERNS (RED FLAGS)

Manual deployments with scripts→

Big bang releases→

No rollback capability→

Releases require downtime→

DORA metrics unknown→

EVIDENCE CHECKLIST

CI/CD pipeline fully automated→

Canary or blue-green deployments→

DORA metrics dashboard exists→

Rollback tested and documented→

Feature flag system in use→

DORA ELITE TARGETS

METRIC ELITE TARGET

Deploy Frequency Multiple/day

Lead Time <1 hour

MTTR <1 hour

Change Fail Rate <15%

Deploy Boring

Releases should be non-events.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-07-capacity.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-09-toil.html

Bot Army Engineering | SRE Maturity Rubric Prev: Release | Next: Culture Domain 9 of 15

Domain 9: Toil & Automation
Toil Reduction, Self-Service, Infrastructure as Code

SRE Bot | Release | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 >50% toil; manual everything; ticket-driven ops

2 Some automation; toil not measured; ad-hoc scripts

3 Toil <50%; IaC for infra; some self-service

4 Toil <30%; full IaC; developer self-service

5 Toil minimal; platform engineering; autonomous ops

ASSESSMENT QUESTIONS

QUESTION MAX

1 What % of time is spent on toil? 6

2 How mature is your IaC? 6

3 What self-service exists for developers? 6

4 How do you track/prioritize toil reduction? 6

5 How automated are routine operations? 6

FOCUS AREAS

Toil: Manual, repetitive, automatable work→

IaC: Infrastructure defined in code (Terraform, Pulumi)→

Self-Service: Developer portals, golden paths→

Automation: Script → tool → platform progression→

ANTI-PATTERNS (RED FLAGS)

Tickets for everything (ops as bottleneck)→

ClickOps in production→

Undocumented tribal knowledge→

SRE team is ticket queue→

No time allocated for automation→

EVIDENCE CHECKLIST

Toil % tracked (<50% target)→

Infrastructure managed via IaC→

Self-service portal for common tasks→

Automation backlog exists→

Time explicitly allocated for automation→

RELATED DOMAINS

DOMAIN RELATIONSHIP

On-Call Reduce pages via automation

Release Eng CI/CD reduces deploy toil

Documentation Automate runbook execution

Automate the Boring

<50% toil, or push back.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-08-release-engineering.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-10-culture.html

Bot Army Engineering | SRE Maturity Rubric Prev: Toil | Next: Chaos Domain 10 of 15

Domain 10: Culture & Organization
Blameless Culture, Psychological Safety, Learning

All Teams | Culture | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Blame culture; heroes celebrated; silos; fear of speaking up

2 Some awareness; lip service to blameless; inconsistent

3 Blameless postmortems; cross-team collaboration; learning

4 Generative culture (Westrum); psychological safety; innovation

5 Learning organization; failure celebrated; continuous growth

ASSESSMENT QUESTIONS

QUESTION MAX

1 How blameless are your postmortems? 6

2 Is psychological safety present? 6

3 How well do teams collaborate? 6

4 How is knowledge shared? 6

5 How is reliability ownership distributed? 6

FOCUS AREAS

Blameless: Focus on systems, not individuals→

Safety: Safe to report errors, ask questions→

Westrum: Generative vs pathological culture→

Learning: Continuous improvement mindset→

ANTI-PATTERNS (RED FLAGS)

Looking for "who" not "what" failed→

Punishing people for incidents→

Information hoarding→

Fear of asking questions→

Reliability is "ops problem"→

EVIDENCE CHECKLIST

Blameless postmortem template in use→

Psychological safety surveys conducted→

Cross-team collaboration examples→

Knowledge sharing sessions regular→

SRE embedded with dev teams→

WESTRUM CULTURE TYPES

TYPE CHARACTERISTICS

Pathological Blame, silos, fear

Bureaucratic Rules, turf, tolerance

Generative Learning, sharing, inquiry

Blame Systems, Not People

Psychological safety enables excellence.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-09-toil.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-11-chaos.html

Bot Army Engineering | SRE Maturity Rubric Prev: Culture | Next: DR Domain 11 of 15

Domain 11: Chaos Engineering
Game Days, Blast Radius Control, Failure Injection

SRE Bot | Resilience | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 No chaos practice; only learn from real outages

2 Occasional game days; manual failure injection

3 Regular chaos experiments; blast radius controlled

4 Continuous chaos in staging; production game days

5 Chaos in production daily; antifragile systems

ASSESSMENT QUESTIONS

QUESTION MAX

1 How often do you run chaos experiments? 6

2 How do you control blast radius? 6

3 Do you run game days? 6

4 How do you apply learnings from chaos? 6

5 What chaos tooling do you use? 6

FOCUS AREAS

Experiments: Hypothesis-driven failure injection→

Blast Radius: Start small, expand gradually→

Game Days: Scheduled team resilience exercises→

Tooling: Chaos Monkey, Gremlin, Litmus→

ANTI-PATTERNS (RED FLAGS)

Chaos without hypothesis→

No blast radius controls→

Chaos findings ignored→

Only chaos in staging→

Chaos as one-time event→

EVIDENCE CHECKLIST

Chaos experiment runbooks exist→

Game day schedule published→

Blast radius controls documented→

Chaos findings tracked and fixed→

Production chaos (with controls)→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Reliability Validate patterns via chaos

DR Test DR via chaos experiments

Incidents Build muscle memory for response

Break Things on Purpose

Find failures before they find you.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-10-culture.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-12-disaster-recovery.html

Bot Army Engineering | SRE Maturity Rubric Prev: Chaos | Next: Security Domain 12 of 15

Domain 12: Disaster Recovery
RPO/RTO, Backup Testing, Failover Procedures

Ops Bot | Operations | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 No DR plan; backups untested; single region

2 Basic backups; DR plan exists but untested

3 RPO/RTO defined; backups tested; failover documented

4 Regular DR drills; automated failover; multi-region

5 Active-active; automated recovery; continuous DR testing

ASSESSMENT QUESTIONS

QUESTION MAX

1 Are RPO/RTO defined and met? 6

2 How often do you test backups? 6

3 How do you test failover? 6

4 Do you have multi-region capability? 6

5 How automated is recovery? 6

FOCUS AREAS

RPO: Recovery Point Objective (data loss)→

RTO: Recovery Time Objective (downtime)→

Backups: Regular testing, not just creation→

Failover: Tested, documented procedures→

ANTI-PATTERNS (RED FLAGS)

Untested backups→

Unknown RPO/RTO→

Single point of failure→

DR plan never tested→

Manual recovery procedures→

EVIDENCE CHECKLIST

RPO/RTO documented per service→

Backup restoration tested quarterly→

Failover runbooks exist→

DR drills conducted annually→

Multi-region deployment (if applicable)→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Chaos Chaos tests DR capabilities

Security Backup encryption, access

Incidents DR invoked during major incidents

Plan for Failure

Test your backups, test your failover.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-11-chaos.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-13-security.html

Bot Army Engineering | SRE Maturity Rubric Prev: DR | Next: Docs Domain 13 of 15

Domain 13: Security Reliability
Secrets, Certificates, Vulnerability Scanning

Security Bot | Governance | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Secrets in code; manual cert management; no scanning

2 Basic secrets vault; some cert automation; ad-hoc scans

3 Secrets rotated; cert auto-renewal; regular scanning

4 Zero-trust principles; scanning in CI; short-lived creds

5
Dynamic secrets; continuous compliance; automated

remediation

ASSESSMENT QUESTIONS

QUESTION MAX

1 How do you manage secrets? 6

2 How are certificates managed? 6

3 How do you scan for vulnerabilities? 6

4 How often do you rotate credentials? 6

5 How do you handle security incidents? 6

FOCUS AREAS

Secrets: Vault, rotation, no hardcoding→

Certs: Auto-renewal, short expiry→

Scanning: SAST, DAST, dependency scanning→

Zero Trust: Verify explicitly, least privilege→

ANTI-PATTERNS (RED FLAGS)

Secrets in source control→

Long-lived credentials→

Manual certificate renewals→

No vulnerability scanning→

Security as afterthought→

EVIDENCE CHECKLIST

Secrets vault in use (HashiCorp, AWS SM)→

Certificates auto-renew (cert-manager)→

Vulnerability scanning in CI/CD→

Credential rotation policy documented→

Security incident runbook exists→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Release Eng Security gates in CI/CD

DR Secure backup storage

Documentation Security runbooks needed

Security as Reliability

Secure systems are reliable systems.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-12-disaster-recovery.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-14-documentation.html

Bot Army Engineering | SRE Maturity RubricPrev: Security | Next: DependenciesDomain 14 of 15

Domain 14: Documentation
Architecture Diagrams, Runbooks, ADRs

All Teams | Governance | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1
Tribal knowledge; outdated

docs; no runbooks

2
Some docs exist; quality

varies; runbooks partial

3
Architecture documented;

runbooks for critical paths

4
Docs as code; ADRs

tracked; runbooks tested

5

Docs auto-generated;

executable runbooks;

always current

ASSESSMENT QUESTIONS

QUESTION MAX

1

How current is your

architecture

documentation?

6

2
Do runbooks exist for all

alerts?
6

3
How do you track

architecture decisions?
6

4
How do you keep docs

up-to-date?
6

5
Can new team members

onboard via docs?
6

FOCUS AREAS

Architecture: C4 diagrams, service
maps

→

Runbooks: Linked from alerts,
tested

→

ADRs: Decision records with context→

Freshness: Regular review cadence→

ANTI-PATTERNS (RED FLAGS)

Knowledge only in people's heads→

Docs abandoned after creation→

Runbooks that don't work→

No architecture diagrams→

Decisions not recorded→

EVIDENCE CHECKLIST

Architecture diagrams exist and are
current

→

Runbooks linked from alert
definitions

→

ADR repository maintained→

Documentation review process
exists

→

Onboarding docs enable self-
service

→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Alerting
Alerts link to

runbooks

Incidents
Runbooks aid

response

Dependencies
Service maps

document deps

Docs as Code

If it's not documented, it doesn't exist.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-13-security.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-15-dependencies.html

Bot Army Engineering | SRE Maturity Rubric Prev: Docs | All Rubrics Domain 15 of 15

Domain 15: Dependency Management
Service Maps, Vendor SLAs, Dependency Health

SRE Bot | Release | Max 30 Points

0-6
AD-HOC

7-12
FOUNDATIONAL

13-18
STANDARDIZED

19-24
ADVANCED

25-30
OPTIMIZED

SCORING CRITERIA BY LEVEL

LEVEL CRITERIA

1 Unknown dependencies; surprise failures from vendors

2 Partial dependency list; some vendor tracking

3 Service maps exist; vendor SLAs tracked; alerts on deps

4 Dependency health dashboard; degradation strategies

5 Auto-discovery; vendor SLA enforcement; antifragile design

ASSESSMENT QUESTIONS

QUESTION MAX

1 Do you have a complete service map? 6

2 How do you track vendor SLAs? 6

3 How do you monitor dependency health? 6

4 What's your strategy for vendor outages? 6

5 How do you manage library dependencies? 6

FOCUS AREAS

Service Maps: Visual dependency graphs→

Vendor SLAs: Tracked, compared to internal SLOs→

Health: Dependency health as metric→

Degradation: Graceful handling of dep failures→

ANTI-PATTERNS (RED FLAGS)

Unknown critical dependencies→

No vendor status monitoring→

Single vendor for critical path→

Outdated library dependencies→

No fallback for vendor outage→

EVIDENCE CHECKLIST

Service dependency map exists→

Vendor SLAs documented and monitored→

Dependency health dashboard available→

Degradation strategies for critical deps→

Library dependency scanning automated→

RELATED DOMAINS

DOMAIN RELATIONSHIP

Reliability Circuit breakers for deps

Observability Track dependency metrics

Security Library vulnerability scanning

Know Your Dependencies

Your SLO is bounded by theirs.

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/rubric-14-documentation.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/rubrics/index.html

