Technical Operations Excellence

A comprehensive guide to Site Reliability Engineering, Observability, and Platform Operations

34 10 35+

ONE-PAGERS CORE THEMES RESEARCH SOURCES
N >
VISION & OVERVIEW SRE FOUNDATIONS
- Reliability Unleashed — From Chaos to Confidence ~ SRE Foundations — SLIs, SLOs, Error Budgets

~. DORA 24 Capabilities — DevOps Research Framework
- SRE Maturity Assessment — \easuring Capabilities

— SLO Design Framework — Effective Objectives

OBSERVABILITY RESILIENCE PATTERNS

—. Observability Mastery — Three Pillars & OTel ~ Resilience Patterns — Circuit Breakers, Bulkheads
— Multi-Window Alerting — Burn Rate Strategy - Defense in Depth — Layered Security

- USE Method — Utilization, Saturation, Errors - HRO Patterns — High-Reliability Orgs

- Observability 2.0 — High Cardinality Events ~. Release It! Patterns — Stability Patterns

— Alert Tuning Playbook — Reducing Noise ~ Chaos Engineering — GameDay Practices
INCIDENT MANAGEMENT RELEASE & CAPACITY

- Incident Excellence — Response & Postmortems - Capacity & Release — DORA, Progressive Delivery
- Learning from Catastrophe — Case Studies — NALSD Framework — Large System Design

- Runbook Quick Reference — Templates & Practices . Designing for Recovery — Breakglass Access
INFRASTRUCTURE AlI/ML & AGENTIC

- Infrastructure Reliability — K8s, TSDB, Backends - Al/ML Operations — MLOps, Non-Determinism

- Kubernetes Patterns — K3s Operational Patterns — Agentic Operations — Bot Operations, Al Agents

- Platform Engineering — Golden Paths, Self-Service

PEOPLE & CULTURE INDUSTRY & IMPLEMENTATION

- People & Culture — Westrum, Team Topologies - Industry Leaders — Google, Netflix, NASA

- On-Call Excellence — Sustainable Rotations - Implementation Roadmap — Getting Started

- Three Ways of DevOps — Flow, Feedback, Learning - Automation Paradoxes — When Automation Hurts
- Team Topologies — Organizing Teams — SRE Evolution Timeline — History & Future

Bot Army Engineering | Technical Operations Excellence 34 One-Pagers | 10 Core Themes | 35+ Research Sources February 2026

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/reliability-unleashed.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-foundations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/dora-24-capabilities.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-maturity-assessment.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/slo-design-framework.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/observability-mastery.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/multi-window-alerting.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/use-method-performance.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/observability-2.0.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/alert-tuning-playbook.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/resilience-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/defense-in-depth.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/hro-pattern-recognition.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/release-it-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/chaos-engineering.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/incident-excellence.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/learning-from-catastrophe.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/runbook-quick-reference.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/capacity-release.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/nalsd-framework.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/designing-for-recovery.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/infrastructure-reliability.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/kubernetes-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/platform-engineering.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/ai-ml-operations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/agentic-operations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/people-culture.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/oncall-excellence.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/three-ways-devops.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/team-topologies.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/industry-leaders.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/implementation-roadmap.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/automation-paradoxes.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-evolution-timeline.html

Reliability Unleashed

From Chaos to Confidence

Vision & Overview | Technical Operations Excellence

MORE DEPLOYS'

182x

2,293x

FASTER RECOVERY'

70%

AUTO-RESOLUTION?

35+

RESEARCH SOURCES

WHAT IS SRE?

SRE is what happens when you ask a software engineer to design an

operations team.

- Google SRE Book

- DevOps is the philosophy; SRE is the implementation

- 50% engineering / 50% operations cap (max toil)

- Error budgets govern release velocity

From Alert Fatigue to Autonomous Operations

70% auto-resolution | 30-second MTTD | <2 pages per on-call shift

THREE PILLARS OF OPERATIONS

Reactive Proactive Predictive

Respond to incidents,

10 CORE THEMES

THEME

-

Foundations
Observability
Resilience
Incidents
Release
Infrastructure
Al/ML Ops
Agentic Ops

© 00 N O O b~ W DN

Culture

-
o

Industry

FOCUS

SLOs, error budgets, toil

Three pillars, OTel, alerting
Patterns, blast radius, defense
Response, postmortems, HRO
CI/CD, progressive delivery
K8s, laC, platform engineering
Non-determinism, drift, MLOps
Bot operations, autonomy
Teams, on-call, sustainability

Case studies, benchmarks

Trend analysis, capacity
triage alerts, execute planning, SLO monitoring

runbooks

Anomaly detection, AlOps,
chaos engineering

GUIDING PHILOSOPHY

Learn from industries where failure means lives lost.

- HRO Research

- Blameless culture: Focus on systems, not individuals
- Embrace complexity: Simple explanations often miss root cause

- Authority to expertise: Knowledge trumps hierarchy in crisis

DORA ELITE BENCHMARKS

METRIC

Deploy Frequency
Lead Time
Change Failure

MTTR

Source: DORA State of DevOps 2024 - 36,000+ professionals

ELITE LOW
On-demand

< 1day

0-15% > 30%
< 1hour

> 6 months

> 6 months

> 6 months

SRE MATURITY JOURNEY

LEVEL STATE CHARACTERISTICS

1 Ad-Hoc Reactive, firefighting

2 Foundational Basic monitoring, SLOs
3 Standardized laC, CI/CD, postmortems
4 Advanced Predictive, chaos, AlOps
5) Optimized Autonomous operations

FOUR GOLDEN SIGNALS

Latency
Traffic
Errors

Saturation

How fast?
How much?
Failing?

How full?

KEY ACRONYMS

Reliability is a Feature

Users don't distinguish between "the app is slow" and "the app is broken"

SLI/SLO/SLA Indicator / Objective / Agreement
MTTR/MTTD Mean Time to Recover / Detect
DORA DevOps Research & Assessment
HRO High-Reliability Organization

1DORA State of DevOps 2023 (elite vs low performers) 2 Target based on industry AlOps benchmarks

Bot Army Engineering | Technical Operations Excellence

Sources: DORA Research, Google SRE, HRO Studies

February 2026

SRE Foundations

SLls, SLOs, Error Budgets & The Philosophy of Reliability

SRE Foundations | Technical Operations Excellence

50%

MAX TOIL CAP

99.9%

TYPICAL SLO

43m 4

ERROR BUDGET/MO GOLDEN SIGNALS

THE CORE PHILOSOPHY

Hope is not a strategy.
- Google SRE Book

- class SRE implements interface DevOps
- Apply engineering discipline to operations
- Balance reliability with feature velocity

- Measure everything; improve continuously

SLI/ SLO / SLA HIERARCHY

TERM DEFINITION EXAMPLE

SLI Service Level Indicator Request latency P99
SLO Service Level Objective P99 < 200ms
SLA Service Level Agreement 99.9% or credits

SLOs should be stricter than SLAs for early warning

THE FOUR GOLDEN SIGNALS

SIGNAL MEASURES QUESTION
Latency Request time How fast?
Traffic System demand How much?
Errors Failed requests Failing?
Saturation Utilization How full?

If you can only measure four things, measure these

TOIL: THE ENEMY OF SRE

Toil = manual, repetitive, automatable work that scales linearly
with service growth

ToIL NOT TOIL
Manually restarting services Writing automation
Copy-paste deployments Designing CI/CD
Manual scaling Auto-scaling policies

Repetitive tickets Self-service tools

<50% MAX TOIL (GOOGLE RULE)

ERROR BUDGET MATH

SLO BUDGET MONTHLY
99% 1% 7.2 hours
99.9% 01% 43.2 minutes
99.95% 0.05% 21.6 minutes
99.99% 0.01% 4.32 minutes
99.999% 0.001% 26.3 seconds

Each 9 costs 10x more - choose wisely

ERROR BUDGET POLICY

Healthy (>50%)
Ship features freely, accept calculated risks

Warning (25-50%)
Prioritize reliability, increase review rigor

Critical (<25%)
Feature freeze, focus exclusively on stability

Bot Army Engineering | SRE Foundations

Sources: Google SRE Book, SRE Workbook, DORA

WHAT IS TOIL?

CHARACTERISTIC EXAMPLE

Manual Human runs script
Repetitive Done frequently
Automatable No judgment needed
Tactical Interrupt-driven

No lasting value Doesn't improve system

Google SRE: Cap toil at 50% of time; invest the rest in engineering

SLO CATEGORIES

Availability % successful requests
Latency % under threshold
Throughput Requests processed
Freshness Data staleness

Error Budgets Enable Innovation

When healthy, take risks. When depleted, stabilize.
It's data for decisions, not punishment.

SRE Foundations

DORA 24 Capabilities

The Science of Software Delivery Performance

Performance Metrics | Technical Operations Excellence

5 24

CAPABILITY CATEGORIES

CORE CAPABILITIES

182x

ELITE DEPLOY FREQ

36K+

SURVEY RESPONDENTS

THE 4 KEY METRICS

METRIC ELITE LOW
Deployment Frequency On-demand >6 months
Lead Time for Changes <1day >6 months
Change Failure Rate 0-15% >64%
MTTR <Thour >6 months

Elite performers: 182x more deploys, 2,293x faster recovery

MEASUREMENT CAPABILITIES (4)

CAPABILITY

17 Monitoring & observability
18 Proactive failure notification
19 WIP limits

20 Visualizing work

TECHNICAL CAPABILITIES (8)

-

0w N O g B~ W DN

CAPABILITY

Version control

Deployment automation
Continuous integration
Trunk-based development
Test automation

Database change management
Shift left on security

Loosely coupled architecture

PRODUCT CAPABILITIES (4)

CAPABILITY

21 Customer feedback

22 Value stream visibility

23 Working in flow state

24 User research integration

CULTURAL CAPABILITIES (5)

#
9
10
il
12
13

CAPABILITY

Generative culture (Westrum)
Job satisfaction

Learning culture
Transformational leadership

Work-life balance

IMPROVEMENT PATHWAYS

Start: Automation

CI/CD, version control, test automation

Then: Architecture

Loosely coupled, trunk-based, small batches

Finally: Culture

Generative culture, learning, leadership

PROCESS CAPABILITIES (3)

#

14
15
16

Bot Army Engineering | DORA 24 Capabilities

CAPABILITY
Work visibility
Working in small batches

Team experimentation

KEY INSIGHT

You can't buy your way to high performance. Culture and practices

matter more than tools.

- DORA Research

Continuous Improvement

The journey to elite performance is incremental.

Sources: DORA State of DevOps 2024, Accelerate Book

Performance Metrics

SRE Maturity Assessment

Measuring and Improving SRE Capabilities

Strategic Roadmap | Technical Operations Excellence

15 450

5 Q

ASSESSMENT DOMAINS MAX POINTS MATURITY LEVELS QUARTERLY REVIEW
15 ASSESSMENT DOMAINS PRIORITY ACTION PLANNING
DOMAIN MAX POINTS High Impact, Low Effort
1 SLOs & Error Budgets 30 Quick wins: implement first
2 Observability 30 High Impact, High Effort
3 Incident Management 30 Strategic: plan carefully
4 Postmortems 30 Low Impact
5 Toil Reduction 30 Deprioritize or defer
6 Capacity Planning 30
7 Change Management 30
8 CI/CD Pipeline 30
9 Disaster Recovery 30 RADAR CHART DOMAINS
10 Security 30 - Core SRE: SLOs, observability, incidents, postmortems
n Documentation 30 ~ Automation: CI/CD, toil reduction, platform
12 On-Call 30 - Resilience: Capacity, DR, chaos, security
13 Chaos Engineering 30 - Culture: On-call, documentation, culture
14 Culture 30
15 Platform 30
ASSESSMENT CADENCE
ACTIVITY FREQUENCY
Full assessment Quarterly
5 MATURITY LEVELS Progress review Monthly
H2MEL D512 EEDRE Action items Weekly tracking
1 Ad-hoc 0-90 Stakeholder report Quarterly
2 Foundational 91-180
3 Standardized 181-270
4 Advanced 271-360
5 Optimized 361-450
COMMON GAPS
DOMAIN TYPICAL ISSUE
SLOs No error budgets enforced
Postmortems Blame-focused reviews
SCORING GUIDE (PER DOMAIN) On-Call Alert fatigue, burnout
— e — Chaos No regular practice
0-6 No formal practice
7-12 Basic/reactive approach
13-18 Documented processes
19-24 Proactive, measured Measure to Improve
25-30 Optimized, automated What gets measured gets managed.

Bot Army Engineering | SRE Maturity Assessment

Sources: Google SRE, DORA, Industry Best Practices

Strategic Roadmap

SLO Design Framework

From SLI to SLA: Building Meaningful Reliability Targets

SRE Foundations | Technical Operations Excellence

3 99.9%

SLI/SLO/SLA TIERS COMMON TARGET

8.76hr

ANNUAL BUDGET (99.9%)

30d

ROLLING WINDOW

SLI - SLO - SLA HIERARCHY SERVICE-TYPE PATTERNS

TERM DEFINITION OWNER SERVICE TYPE PRIMARY SLIS

SLI Metric that measures service Engineers User-facing API Availability, latency

SLO Target value for the SLI SRE/Product Background job Completion rate, freshness

SLA Contract with consequences Business/Legal Data pipeline Freshness, correctness
Rule: SLO should be stricter than SLA (buffer for internal response) Storage Durability, availability

MULTI-WINDOW SLO

COMMON SLI TYPES T
- 30-day: Long-term reliability view

TYPE SLI FORMULA - 7-day: Recent trend indicator

Availability Successful requests / Total requests - 1-day: Acute issue detection

Latency Requests < threshold / Total requests -~ 1-hour: Real-time burn rate

Throughput Requests served / Time period Alert on short windows; report on long windows
Correctness Correct responses / Total responses

Freshness Data age < threshold / Total reads

IMPLEMENTATION CHECKLIST

STEP ACTION
1 Identify critical user journeys

TARGET SELECTION GUIDE 2 Define SLls for each journey

TARGET MONTHLY DOWNTIME USE CASE 3 Set initial targets (start conservative)

99% 7.3 hours Internal tools 4 Implement measurement & dashboards

99.5% 3.6 hours Non-critical services 5 Create error budget alerts

99.9% 43.8 min Standard production 6 Establish review cadence

99.95% 21.9 min Business-critical

99.99% 4.4 min Mission-critical

KEY INSIGHT

100% is the wrong target. Choose the reliability that balances user
happiness with development velocity.

ERROR BUDGET POLICY

BUDGET STATUS ACTION

>50% remaining Ship features freely

25-50% Ship with caution
<25% Reliability focus only SLOs Enable Decisions
Exhausted Feature freeze

Error budgets are the currency of reliability.

Bot Army Engineering | SLO Design Framework Sources: Google SRE, SRE Workbook, Implementing SLOs SRE Foundations

Observability Mastery

Three Pillars, Observability 2.0 & Modern Instrumentation

Observability | Technical Operations Excellence

3 30s

CLASSIC PILLARS TARGET MTTD

OTel

STANDARD

2.0

NEW PARADIGM

THREE CLASSIC PILLARS

Metrics

Aggregated counts, gauges, histograms. Tools: Prometheus, InfluxDB

Logs
Discrete events, timestamps, stack traces. Tools: Loki, Elasticsearch

Traces

Request flow, spans, latency breakdown. Tools: Tempo, Jaeger

OPENTELEMETRY STANDARD

SIGNAL STATUS FEATURE

Traces Stable W3C context
Metrics Stable Temporality
Logs Stable Trace correlation
Profiling Exp Continuous

traceparent: {version}-{trace-id}-{parent-id}-{flags}

OBSERVABILITY 2.0

Observability is about asking arbitrary questions without shipping new
code.

- Charity Majors, Honeycomb

CLASSIC (1.0) MODERN (2.0)

Pre-defined metrics Arbitrary queries
Three separate pillars Wide structured events
Dashboard-driven Exploration-driven

Known unknowns Unknown unknowns

CARDINALITY & COST

You can't run observability infra the same size as production.

- Liz Fong-Jones

ISSUE IMPACT FIX

High cardinality Query slowness Aggregation

Unbounded labels OOM, index boom Label policies

Danger: user_id, request_id in labels

USE METHOD

For every resource: Utilization, Saturation, Errors

RESOURCE U S| E

CPU Y%busy Run queue Errors
Memory %used Swap I/O OOM
Disk % util Queue SMART
Network BW Retrans Errors

RED METHOD

For every service: Rate, Errors, Duration

SIGNAL METRIC QUESTION
Rate req/sec How busy?
Errors fail/sec Breaking?
Duration latency How slow?

SAMPLING STRATEGIES

TYPE WHEN TRADE-OFF

Head At request start Fast, may miss errors
Tail After completion Smart, more overhead
Adaptive Dynamic rate Best of both

Always sample 100% of errors and slow requests

Bot Army Engineering | Observability Mastery

INSTRUMENTATION BEST PRACTICES

- Standardize naming: Consistent metric/span names
- Add context: Include service, env, version labels
- Correlate signals: Trace |IDs across logs/metrics
- Sample wisely: 100% errors, sample successes

Instrument at code level, not just infrastructure

Debug Unknown Unknowns

Instrument first, decide what to alert later.

Sources: Observability Engineering, USE Method, OTel

Observability

Multi-Window Alerting

Burn Rates, SLO-Based Alerts & Alert Attributes

Observability Deep Dive | Technical Operations Excellence

14. 4X 4

CRITICAL BURN RATE

ALERT ATTRIBUTES

<2 <5%

PAGES/WEEK TARGET FALSE POSITIVES

MULTI-WINDOW BURN RATE ALERTS

TYPE BUDGET WINDOW BURN
Page (Critical) 2% [1h 1h + 5m 14.4x
Page (High) 5% / 6h 6h + 30m 6x
Ticket 10% / 3d 72h + 6h 1x

Dual windows prevent alert flapping while catching fast burns

SYMPTOM VS CAUSE HIERARCHY

User-Facing Symptoms
Error rate, latency, availability - PAGE these

System Symptoms
Queue depth, connection pool - NOTIFY these

Underlying Causes
CPU, memory, disk - TICKET or LOG these

FOUR ALERT ATTRIBUTES

ATTRIBUTE DEFINITION GOAL
Precision % genuine alerts Minimize FPs
Recall % incidents caught Catch all issues
Detection Time to notify Alert quickly
Reset Time to resolve Auto-clear

HEALTHY ON-CALL METRICS

METRIC TARGET
Pages per week <2
False positive rate <5%
Off-hours pages <1
Actionable % >95%

BURN RATE FORMULA

Burn Rate = (1 - SLO) / Time Window
14.4x = consume 30-day budget in ~2 days

BURN RATE BUDGET EXHAUSTION
>5%/day Immediate incident
2-5%/day Investigation needed
<2%]/day Normal ops

NOISE REDUCTION TECHNIQUES

- Aggregation: Group related alerts

- Suppression: Mute during maintenance
- Deduplication: Same incident once

- Auto-escalation: After X minutes

- Alert correlation: Link to root cause

ALERT CATEGORIES

CATEGORY RESPONSE WHEN

Page Immediate User impact
Notify Hours Degradation
Ticket Next day Slow drift
Log Review Informational

Bot Army Engineering | Multi-Window Alerting

GOLDEN RULES

- Actionable: Can | do something?
- Urgent: Does it need attention now?
- Real: Is this actually happening?

- Human judgment: Does this need a person?

Alert on Symptoms

Page for user pain, ticket for slow burns.

Sources: Google SRE Workbook, Prometheus Best Practices

Observability Deep Dive

USE Method Performance

Utilization, Saturation, and Errors

Observability | Technical Operations Excellence

G /
(o)
3 7 <80% 0]
CORE METRICS RESOURCE TYPES UTILIZATION TARGET IDEAL SATURATION
USE METHOD DEFINED COMMON PROMETHEUS QUERIES
METRIC DEFINITION TARGET METRIC QUERY PATTERN
Utilization % time resource is busy <80% CPU Util rate(cpu_seconds[5m])
Saturation Queued work beyond capacity 0 Mem Util used / total * 100
Errors Error count/rate 0 Disk Util rate(io_time[5m])
Created by Brendan Gregg for systematic resource analysis Net Util rate(bytes[5m]) / bw
PROFILING & FLAME GRAPHS
RESOURCE TYPES - CPU flame graph: Where time is spent
- Off-CPU flame: What code is waiting
RESOURCE U METRIC S METRIC
- Memory flame: Allocation patterns
P %o R | h
i) o busy un queue lengt - Differential flame: Before/after comparison
Memory % used OOM events, swap .
Tools: perf, bcc, bpftrace, async-profiler, pprof
Disk I/0 % busy Queue depth
Network % bandwidth Drop/retransmit
Storage % capacity Out of space
Threads Pool usage Blocked threads
File Handles Open FDs FD exhaustion PERFORMANCE ANTI-PATTERNS
ISSUE SYMPTOM
Resource leak Gradual degradation
Lock contention High CPU, low throughput
Thundering herd Bursty overload
N+1queries Linear database calls
USE VS RED VS GOLDEN SIGNALS
METHOD FOCUS BEST FOR
USE Resources Infrastructure, VMs
RED Requests Services, APls
. . . SATURATION INDICATORS
Golden Signals User experience Customer-facing
- Run queue > cores: CPU saturation
- Swap active: Memory saturation
- Disk queue > 1: |/O saturation
- TCP retransmits: Network saturation
KEY INSIGHT
For every resource, check utilization, saturation, and errors. Start here
for performance issues. Measure First
- Brendan Gregg Never guess; always profile before optimizing.
Bot Army Engineering | USE Method Performance Sources: Brendan Gregg, Systems Performance, BPF Tools Observability

Observability 2.0

Wide Events, High Cardinality, and Beyond the Three Pillars

Observability | Technical Operations Excellence

100s 10° 1

FIELDS PER EVENT UNIFIED FORMAT

<10s

HIGH CARDINALITY QUERY RESPONSE

OBSERVABILITY 1.0 VS 2.0 CORE PRACTICES

ASPECT 1.0 2.0 Instrument Everything

Data 3 pillars (siloed) Wide structured events Every service emits structured events on every request
Cardinality Low (pre-aggregated) High (millions) Query Interactively

Questions Known unknowns Unknown unknowns Ad-hoc questions, slice and dice by any field

Debug Correlate across tools Single pane of glass SLO Integration

Events feed SLI calculations directly

WIDE STRUCTURED EVENTS EVENT SCHEMA EXAMPLE

Emit one wide event per unit of work, with all relevant context FIELD EXAMPLE VALUE
attached. service api-gateway
= Charity Majors endpoint /v2/users/:id
- Request context: user_id, tenant_id, request_id duration_ms 47.3
- Timing: duration, queue_time, db_time status_code 200
- Result: status, error_type, cache_hit user_id u_abcl123
- Environment: version, host, region, pod cache_hit true
db_queries 3

1 1 1 1
HIGH CARDINALITY FIELDS TOOLS FOR OBSERVABILITY 2.0

FIELD CARDINALITY
TOOL STRENGTH
user_id Millions . . L
Honeycomb Query-first, high cardinality
trace_id Billions .
Grafana + Loki Open-source ecosystem
request_id Billions . .
OpenTelemetry Vendor-neutral instrumentation
build_id Thousands
endpoint Hundreds

Traditional metrics explode with high cardinality

KEY QUESTION

Can you debug problems you've never seen before, without adding

new instrumentation?
CHARITY MAJORS PRINCIPLES
- Observability is about understanding new problems
- Debug from production, not staging
- Instrument at the code level, not infrastructure Ask New Questions

- Exploratory investigation over dashboards

Bot Army Engineering | Observability 2.0

True observability answers questions you haven't thought to ask yet.

Sources: Charity Majors, Honeycomb, OpenTelemetry

Observability

Alert Tuning Playbook

Reducing Noise, Improving Signal

Observability | Technical Operations Excellence

G /
(o) 0,
<2 <5% 80% 30s
PAGES PER SHIFT FALSE POSITIVE RATE ACTIONABLE TARGET MTTD GOAL
ALERT QUALITY FRAMEWORK NOISE REDUCTION STRATEGIES
QUALITY CRITERIA Aggregate Related
Actionable Requires immediate human action Group alerts by service or component
Symptom-based Alerts on user impact, not causes Adjust Thresholds
Timely Detects issues within SLO window Based on historical data and SLOs
Prioritized Clear severity levels Add Hysteresis
Documented Linked to runbooks Require sustained violations to fire

SEVERITY LEVELS
SYMPTOM VS CAUSE ALERTS

SEVERITY RESPONSE EXAMPLE
TYPE EXAMPLE PAGE?
P1 Page, escalate Service down
Symptom Error rate >1% Yes
P2 Page, working hours Degraded service
Symptom Latency p99 >500ms Yes
. P3 Ticket, next day Non-critical issue
Cause CPU >80% Notify only
. . P4 Ticket, backlog Improvement
Cause Disk >90% Ticket

Page on symptoms; ticket causes for investigation

ALERT REVIEW CADENCE

ACTIVITY FREQUENCY
BURN RATE ALERTING

Alert review Weekly
WINDOW BURN RATE ACTION .

Threshold tuning Monthly
1hour 14.4x Page immediately .

Alert inventory Quarterly
6 hours 6x Page

Delete unused Quarterly
24 hours 3Xx Ticket
72 hours 1x Review weekly

Burn rate = (1- SLI) / (1- SLO target)

GOLDEN RULE

Every alert should either require immediate action or be deleted.

ALERT FATIGUE INDICATORS

- >2 pages per on-call shift
- >5% false positive rate

- Same alert firing repeatedly

- Engineers ignoring alerts Signal Over Noise

- No runbook links The best alert is one that never fires unnecessarily.

Bot Army Engineering | Alert Tuning Playbook Sources: Google SRE, Alerting Best Practices, DORA Observability

Resilience Patterns

Circuit Breakers, Bulkheads & Graceful Degradation

Resilience Patterns | Technical Operations Excellence

G /
N+2 3 <1s 5
REDUNDANCY CIRCUIT STATES TIMEOUT TARGET DEFENSE LAYERS
CIRCUIT BREAKER PATTERN LOAD BALANCING: L4 VS L7
Prevents cascading failures by stopping requests to failing ASPECT L4 (TRANSPORT) L7 (APPLICATION)
services. Routing IP + Port HTTP headers, URLs
Closed Latency 10-100 ps 0.5-3 ms
Normal operation, requests pass through CPU Low High (TLS)
Open Best For DDoS, non-HTTP Smart routing

Requests blocked, return fallback immediately

Production: Layer both (L4 edge - L7 internal)

Half-Open
Limited test requests to check recovery

TIMEOUT STRATEGY

TYPE TYPICAL VALUE
Connect 250ms - 1s
BULKHEAD PATTERN Header 5-30s
Idle 30 - 300s
Like watertight compartments in ships - isolate failures to prevent
sinking. Critical: Timeouts DECREASE deeper in call chain
TYPE MECHANISM USE CASE
Thread Pool Dedicated pool Isolate slow deps
Semaphore Concurrency limit Lightweight isolation DEFENSE IN DEPTH

Multiple independent layers - no single layer is exclusively
relied upon.

1. - Prevention of abnormal operation
2. - Control of abnormal operation

GRACEFUL DEGRADATION 3. - Control within design basis
4. - Control of severe conditions

Reduce work or quality to maintain availability during failures. 5. . Mitigation of consequences

STRATEGY EXAMPLE
Quality Reduction Lower image resolution
Feature Shedding Disable recommendations
CASCADING PREVENTION
Subset Query Search cache only
Default Response Return static content PATTERN PURPOSE
Timeouts Bound waiting time
Bulkheads Isolate resources
Load Shedding Reject before instability
Deadlines Propagate time limits
RETRY WITH BACKOFF
delay = min(maxBackoff, base * 2”attempt + jitter)
- Do: Add jitter, cap max delay, limit attempts Fail Fast, Recover Faster
- Don't: Retry non-idempotent ops, nest retries Every pattern protects downstream dependencies.

Bot Army Engineering | Resilience Patterns Sources: Release It!, Google SRE, Resilience4j Resilience Patterns

Defense in Depth

5-Layer Model, Compartmentalization & Blast Radius Control

Resilience & Infrastructure | Technical Operations Excellence

G /
5 3 N+2 0]
DEFENSE LAYERS COMPARTMENTS REDUNDANCY SINGLE POINTS
5-LAYER DEFENSE MODEL REDUNDANCY PATTERNS

LAYER FUNCTION EXAMPLE PATTERN DESCRIPTION

1. Perimeter Edge protection WAF, firewall N+1 One spare for failover

2. Network Segmentation VLANSs, VPCs N+2 Two spares (for critical systems)

3. Host Hardening Patches, config Active-Active All replicas serve traffic

4. Application Code security Input validation Active-Passive Standby on failover

5. Data Encryption At rest, in transit

N+2 for tier-0 critical systems

Multiple layers must fail for a breach to succeed

ADVANCED AUTHORIZATION

- MPA: Multi-party approval for sensitive ops

COMPARTMENTALIZATION STRATEGIES - Temporary Access: Time-bound permissions
STRATEGY DESCRIPTION - Business Justification: Tie to tickets/incidents
Role Separation Different jobs run as distinct accounts - Breakglass: Emergency override with audt
Location Separation Geographic isolation (multi-region)
Time Separation Key rotation forces continuous presence
DESIGNING FOR RECOVERY
PRINCIPLE APPLICATION
Go fast, guarded Speed with policy guardrails
BLAST RADIUS CONTROL Minimize time deps Don't wait for wall-clock
Know intended state Encode complete config
Failure Domains .
Partition into independent copies Emergency access Works when systems fail

Circuit Breakers

Stop cascading failures at boundaries

Bulkheads
Isolate resource pools per tenant/service

ZERO SINGLE POINTS OF FAILURE

- Every component has a backup
- Every process has redundancy
- Every region has failover

- Every credential has rotation

ACCESS CLASSIFICATION

TIER DATA TYPE CONTROLS

Public Company-wide Low-risk

Sensitive Authorized only Medium-high Assume Breach

Highly Sensitive No permanent access MPA required Design so attackers must breach ALL layers.

Bot Army Engineering | Defense in Depth Sources: NIST, Google SRE, Nuclear Engineering Principles Resilience & Infrastructure

HRO Pattern Recognition

Learning from High-Reliability Organizations

Resilience Patterns | Technical Operations Excellence

5

HRO PRINCIPLES

10

ROOT CAUSE CATEGORIES

4

SWISS CHEESE LAYERS

1076

AVIATION ERROR RATE

5 HRO PRINCIPLES DEEP DIVE

PRINCIPLE

Preoccupation with
Failure

APPLICATION

Treat near-misses as failures; never assume

safety

Resist simple explanations; embrace

Reluctance to Simplify

Sensitivity to Operations

Commitment to
Resilience

Deference to Expertise

complexity

PATTERN RECOGNITION TABLE

SIGNAL PATTERN
Latency spike Capacity/Dependency
Error burst Deploy/Config

Gradual degrade Resource leak

Maintain situational awareness at all times

Focus on recovery, not just prevention

Authority migrates to knowledge in crisis

ACTION

Scale or isolate

Rollback

Restart/investigate

BIG 10 ROOT CAUSES

#

© 00 N o o B~ w nNn-

-
o

CATEGORY
Config Change
Capacity
Dependency
Hardware
Security
Human Error
Software Bug
Data

Network

External

EXAMPLE

Bad deploy, wrong flag
Resource exhaustion
Upstream/downstream fail
Disk, network, memory
Attack, credential leak
Typo, wrong command
Race condition, logic error
Corruption, schema drift
Partition, DNS, latency

Cloud provider, 3rd party

Cascading fail Missing circuit breaker Shed load
Partial outage Network partition Failover
HRO VS TRADITIONAL ORGS
ASPECT TRADITIONAL HRO
Failures Hide/blame Learn/share
Complexity Simplify away Embrace
Authority Hierarchy Expertise
Focus Efficiency Reliability

INDUSTRIES WE LEARN FROM

INDUSTRY KEY PRACTICE

Aviation Checklists, crew resource mgmt
Nuclear Defense in depth, safety culture
Healthcare Root cause analysis, just culture
Military After-action reviews, command

FAILURE TAXONOMY

SWISS CHEESE MODEL

Accidents occur when holes in multiple defense layers momentarily
align.

- Layer 1: Organizational controls

- Layer 2: Technical safeguards

- Layer 3: Monitoring & detection

- Layer 4: Human operators

Bot Army Engineering | HRO Pattern Recognition

- Active failures: Immediate triggers (human error)
- Latent conditions: Dormant system weaknesses

- Error-provoking: Conditions that invite mistakes

- James Reason

Failures Are Teachers

Every incident is a window into system weaknesses.

Sources: Weick & Sutcliffe, James Reason, NASA, NTSB

Resilience Patterns

Release It! Patterns

Stability Patterns for Production Systems

Resilience Patterns | Technical Operations Excellence

15

STABILITY PATTERNS

12

ANTI-PATTERNS

2007

FIRST EDITION

Bbs

TIMEOUT DEFAULT

KEY STABILITY PATTERNS

PATTERN
Circuit Breaker
Bulkhead
Timeout

Retry

Fallback

Shed Load
Handshaking

PURPOSE

Stop cascading failures
Isolate failures to partitions
Prevent indefinite waits
Handle transient failures
Graceful degradation
Reject excess traffic

Verify capacity before work

STABILITY ANTI-PATTERNS

ANTI-PATTERN
Integration Points
Chain Reactions
Cascading Failures
Users

Blocked Threads

Unbounded Queues

RISK

Every call is a risk

One failure cascades

Avalanche effect

Unpredictable traffic

Thread pool exhaustion

Memory exhaustion

CIRCUIT BREAKER STATES

STATE BEHAVIOR

Closed Normal operation, count failures
Open Fast fail, don't call downstream
Half-Open Test with limited traffic

Thresholds: 5 failures, 30s t

imeout, 1 test request

MORE ANTI-PATTERNS

ANTI-PATTERN
Self-Denial
Unbalanced Capacity
Slow Responses

SLA Inversion

RISK

Marketing DDos

Bottleneck fails first

Worse than no response

Depend on weaker SLA

BULKHEAD STRATEGIES

- Thread pool isolation: Separate pools per dependency

- Semaphore isolation: Limit

concurrent requests

- Process isolation: Separate containers/pods

- Network isolation: Separate subnets

TIMEOUT GUIDELINES
TYPE
Connect
Read
Total

RECOMMENDATION
1-3 seconds
5-30 seconds

Max acceptable latency

Always set timeouts! Never use language defaults.

MORE STABILITY PATTERNS

PATTERN
Steady State
Test Harness
Decoupling

Fail Fast

Bot Army Engineering | Release It! Patterns

USE CASE
Self-cleaning logs/data
Simulate bad behaviors
Async via queues

Check prereqs early

KEY QUOTE

Every integration point will eventually fail in some way.

- Michael Nygard, Release It!

Expect Failure

Design for failure; plan for success.

Sources: Release It! 2nd Ed (Michael Nygard)

Resilience Patterns

Chaos Engineering

Principles, Experiments & GameDay Practices

Resilience Patterns | Technical Operations Excellence

G /
MATURITY LEVELS EXPERIMENT PHASES CHAOS MONKEY BORN INCIDENTS DURING
CHAOS ENGINEERING PRINCIPLES SAFETY REQUIREMENTS
PRINCIPLE DESCRIPTION Abort Conditions
Hypothesis Define steady state & expected behavior Define clear stop criteria before starting
Vary Real-World Simulate production conditions Blast Radius
Run in Prod Staging doesn't catch all issues Limit scope; start with 1% of traffic
Automate Continuous experimentation Rollback Plan
Minimize Blast Start small, abort on harm Instant recovery must be ready
GAMEDAY FORMAT
EXPERIMENT DESIGN TIME ACTIVITY
PHASE ACTIONS 0:00 Brief team, review hypothesis
1. Hypothesis Define steady state metrics 0:15 Start observability baseline
2. Design Choose failure injection type 0:30 Inject failure
3. Execute Run with monitoring active 1:00 Observe, document behaviors
4. Analyze Compare results to hypothesis 1:30 Stop injection, verify recovery
2:00 Debrief, document findings
MATURITY MODEL GAMEDAY ROLES
LEVEL CAPABILITY ROLE RESPONSIBILITY
1. Ad-hoc Manual, sporadic testing Facilitator Run experiment, track time
2. Basic Simple failure injection Observer Monitor dashboards
3. Repeatable Documented experiments Scribe Document findings
4. Automated CI/CD integrated chaos Safety Officer Call abort if needed
5. Optimized Continuous chaos in prod
SAFETY CHECKLIST
- O Abort conditions defined
10 CORE EXPERIMENTS ~ O Rollback plan documented
EXPERIMENT TESTS - O Blast radius limited (<10% traffic)
Instance Kill Auto-recovery, failover - [Monitoring dashboards open
. . » - [Stakeholders notified
Zone Failure Multi-AZ resilience
Network Latency Timeout handling
Packet Loss Retry logic
Dependency Down Circuit breakers Eail Safely
Also: CPU stress, memory pressure, disk fill, DNS failure, clock skew Better to find weaknesses before your customers do.

Bot Army Engineering | Chaos Engineering Sources: Netflix, Chaos Engineering (Rosenthal), CNCF

Resilience Patterns

Incident Excellence

ITIL Lifecycle, Blameless Postmortems & On-Call Sustainability

Incident Management | Technical Operations Excellence

5 <2

ITIL PHASES PAGES/SHIFT

IMAG FRAMEWORK

3Cs 48h

POSTMORTEM SLA

ITIL INCIDENT LIFECYCLE

1. Identify
Detection via monitoring, alerts, or reports

2. Categorize

Classify by type, service, impact area

3. Prioritize
Assign SEV level based on impact + urgency

4. Respond
Diagnose, mitigate, resolve, communicate

5.Close
Verify, document, postmortem, action items

INCIDENT ROLES

ROLE RESPONSIBILITY
Incident Commander Owns resolution, delegates
Ops Lead Technical investigation
Comms Lead Stakeholder updates

Scribe Documents timeline

SEV1/2: Add Remediation Lead, Legal (if needed)

SEVERITY LEVELS

LEVEL IMPACT RESPONSE

SEV1 Critical outage <15 min

SEV2 Major degradation <30 min

SEV3 Minor impact <4 hours

SEV4 Low/cosmetic Next business day

BLAMELESS POSTMORTEMS

Ask "what" and "how" questions, never "why" - it forces justification
and blame.

- John Allspaw, Etsy

- Timeline: What happened, when?
- Contributing factors: What conditions existed?
- Action items: Preventative, detective, mitigating

IMAG FRAMEWORK (3CS)

PRINCIPLE ACTIONS

Coordinate IC assigns roles, manages workstreams
Communicate Status updates, stakeholder briefs

Control Authorize changes, manage scope

Crisis triage: data criticality, trust relationships, compensating controls

COMMUNICATION CADENCE

SEVERITY UPDATE FREQUENCY
SEV1 Every 15 minutes
SEV2 Every 30 minutes
SEV3/4 Hourly or as needed

Playbooks improve MTTR by 3x on average

Bot Army Engineering | Incident Excellence

CRISIS TRIAGE QUESTIONS

- Data criticality: What can be accessed from compromised systems?
- Trust relationships: What other systems trust the affected one?

- Compensating controls: Are there mitigations in place?

- Blast radius: How many users/services affected?

TRAINING: WHEEL OF MISFORTUNE

Role-play exercise for IC practice. Spin wheel to select historic
incident, responders handle in real-time simulation.
- Do: Practice handoffs, escalation

- Don't: Use for evaluation/blame

Learn from Every Incident

Blameless culture enables honest retrospectives.

Sources: Google SRE, ITIL, Sidney Dekker

Incident Management

Learning from Catastrophe

Swiss Cheese Model, Big 10 Root Causes & Pattern Recognition

Historic Incidents | Technical Operations Excellence

50+

INCIDENTS ANALYZED

40%

CONFIG/DEPLOY ERRORS

$10B+ 4

CROWDSTRIKE DAMAGE DEFENSE LAYERS

BIG 10 ROOT CAUSES

#

-

a b~ W N

© 0o N O

ROOT CAUSE
Config/Deploy Errors
Ignored Warnings
Single Point of Failure
Inadequate Testing

Simple Bugs at Scale

Monitoring Gaps

Complex Interdependencies
Human Error Under Pressure
Vendor/3rd Party Failures
Legacy System Fragility

FREQ

~40%

High
High
High
High

Med
Med
Med
Med
Med

NOTABLE INCIDENTS

INCIDENT ROOT CAUSE LESSON

GitLab Config error Staged rollouts
737 MAX Single PoF Redundancy
Knight Capital Bug at scale Code review
Therac-25 Bad testing Integration tests

SWISS CHEESE MODEL

Hazard - [Prevention] - [Detection] - [Containment] -

[Recovery] - Accident

LAYER

Prevention

Detection

Containment

Recovery

Key: Catastrophic failures require ALL layers to fail simultaneously

IF HOLE
Near miss
Degradation
Incident

Catastrophe

MITIGATIONS BY ROOT CAUSE

CAUSE MITIGATION

Config errors Canaries, staged rollouts
Ignored warnings Safety culture, incentives
Single PoF Redundancy, chaos testing
Testing gaps Comprehensive coverage
Dependencies Dependency mapping

CROSS-INDUSTRY LESSONS

- Aviation: Crew resource management

- Nuclear: Defense in depth

- Healthcare: Checklists, near-miss reporting
- Finance: Circuit breakers, kill switches

CROWDSTRIKE CASE STUDY (2024)

- Impact: $10B+ damages, 8.5M Windows systems

- Root Cause: Content update bypassed validation

- Kernel driver: Single point of failure

Lesson: Staged rollouts essential for security updates

Bot Army Engineering | Learning from Catastrophe

PATTERN RECOGNITION

Every catastrophe is a near-miss that was ignored.

Defense in Depth

Build redundant, independent defenses at every layer.

Sources: 50+ Historic Incidents, Swiss Cheese Model, HRO Research

Historic Incidents

Runbook Quick Reference

Templates, Decision Trees, and MTTR Targets

Incident Management | Technical Operations Excellence

RUNBOOK TEMPLATES

10 <5min <lhr 80%

TRIAGE TARGET MTTR TARGET RUNBOOK COVERAGE

10 ESSENTIAL RUNBOOK TYPES

#

© 00 N O o b~ w N -

-
o

RUNBOOK

Service Restart
Deployment Rollback
Database Failover
Cache Clear

Traffic Shift

Scale Out

Certificate Rotation
DNS Update

Feature Flag Toggle

Emergency Access

MTTR TARGET
5 min

10 min

15 min

5 min

10 min

5 min

15 min

10 min

2 min

5 min

VERIFICATION CHECKLIST

CHECK HOW

Service healthy Health endpoint returns 200
Metrics normal Grafana dashboards green
Errors stopped Error rate below threshold
Latency normal p99 within SLO

Logs clean No error spikes in logs

DECISION TREE: ERRORS SPIKE
- Check: Error type?
- 5xx - Server-side issue
- 4xx - Client or config issue
- Check: Pattern?
- Sudden spike — Deployment or config
- Gradual - Resource exhaustion

— Check: Scope?

RUNBOOK STRUCTURE

SECTION CONTENT

Overview What this runbook addresses
Symptoms How to recognize the issue
Prerequisites Required access & tools
Steps Numbered procedure
Verification How to confirm success
Rollback If things go wrong
Escalation Who to contact next

- One endpoint - Check that handler
- All endpoints — Check infrastructure

RUNBOOK QUALITY CRITERIA

Testable
Can be verified in staging/DR drills

Automatable

Steps are scriptable for future automation

Measurable

Includes timing targets and success criteria

DECISION TREE: HIGH LATENCY

- Check: Is it a single service or all?

- Single - Check that service's resources

~ All - Check shared dependencies (DB, cache)

- Check: Recent deployment?

- Yes - Consider rollback

- No - Check traffic levels

- Check: Resource exhaustion?

- Yes - Scale or restart

- No - Check network, dependencies

Bot Army Engineering | Runbook Quick Reference

QUICK COMMANDS

ACTION EXAMPLE

Pod restart kubectl rollout restart

Rollback kubectl rollout undo

Scale kubectl scale --replicas
Document to Automate

Today's runbook is tomorrow's automation.

Sources: Google SRE, PagerDuty, Incident Response Incident Management

Capacity & Release Engineering

DORA Metrics, Progressive Delivery & Safe Changes

Capacity & Release | Technical Operations Excellence

4 <5%

DEPLOY STRATEGIES ELITE CFR

1-5% <1h

CANARY SIZE ELITE LEAD TIME

RELEASE PERFORMANCE TARGETS

METRIC ELITE TARGET

Deploy Frequency On-demand (multiple/day)
Lead Time <1 hour commit to prod
Change Fail Rate <5% of deploys cause issues
Time to Restore <Thour to recover

Based on DORA research: elite performers achieve 182x higher deploy
frequency

NALSD FRAMEWORK

Non-Abstract Large System Design - 4 essential questions:

QUESTION FOCUS

Is it possible? Can we build it at all?
Can we do better? Optimize design choices
Is it feasible? Cost, time, resources

Is it resilient? Graceful degradation

DEPLOYMENT STRATEGIES

Canary
Route 1-5% traffic to new version, monitor, expand gradually

Blue-Green
Two identical envs, instant switchover, easy rollback

Feature Flags

Decouple deploy from release, targeted rollouts

CAPACITY PLANNING

COMPONENT APPROACH

Demand Forecast Historical trends + growth models
Headroom N+1 minimum, N+2 for critical
Load Testing Regular stress tests at 2x expected
Auto-scaling HPA/VPA with proper limits

CANARY BEST PRACTICES

- One at a time: Avoid signal contamination
- 5-12 metrics: Monitor error rate, latency, saturation
- Absolute thresholds: Define rollback criteria upfront

- Bake time: Allow sufficient observation window

40%+ of incidents stem from config/deployment errors

CHANGE RISK CATEGORIES

TIER EXAMPLES PROCESS

Low Config, docs Auto-deploy
Medium App code Canary + review
High Infra, DB schema Change board

PROGRESSIVE DELIVERY

Commit -» CI/CD - Canary (1-5%) - Rollout - Full Deploy

STAGE GATE

Build Tests pass, security scan
Canary Error budget not exceeded
Rollout Metrics within thresholds

LAUNCH CHECKLIST

- v SLOs defined and dashboards ready
- v Runbooks documented

- ¢ Rollback procedure tested

- v On-call coverage confirmed

!

v Load test completed

Ship Fast, Ship Safe

Elite teams deploy frequently with low failure rates.

Bot Army Engineering | Capacity & Release Sources: DORA Research, Google SRE, Accelerate Capacity & Release

NALSD Framework

Non-Abstract Large System Design

Capacity & Release | Technical Operations Excellence

N\ /
4 N+2 2X 30d
ESSENTIAL QUESTIONS HEADROOM TARGET LOAD TEST TARGET FORECAST WINDOW
THE 4 ESSENTIAL QUESTIONS CAPACITY METRICS

1.ls it possible? METRIC TARGET

Can we build it at alf? CPU Utilization <70% avg, <90% peak

2. Can we do better? Memory <80% avg, <95% peak

Optimize design choices Disk I/O <70% queue depth

3.Is it feasible? Network <60% bandwidth

Cost, time, resources . . P
Leave headroom for traffic spikes and incidents

4.ls it resilient?
Graceful degradation

SCALING STRATEGIES

TYPE WHEN TO USE
CAPACITY PLANNING PROCESS Vertical Simple, single-instance
STEP ACTIVITY Horizontal Stateless, distributed
1. Demand Forecast Historical trends + growth models Auto-scaling Variable traffic patterns
2. Supply Analysis Current capacity, bottlenecks Predictive Known events (launches)
3. Gap Assessment Where will we run out?
4. Headroom Planning N+1 min, N+2 for critical
FORECASTING INPUTS
- Historical trends: Past 90+ days growth
LOAD TESTING STRATEGY - Seasonality: Day/week/month patterns
- Business events: Launches, campaigns
USSR LLGeE el - External factors: Market trends
Baseline Normal load Current traffic
Stress Find limits 2x expected
Spike Sudden surge 10x for 30s
Soak Leaks, drift 24-48 hours
WARNING SIGNS
- Utilization >80% sustained
- P99 latency creeping up
- Queue depths growing
DESIGN TRADE-OFFS - Error rates increasing
DIMENSION TRADE-OFF
Consistency vs. Availability (CAP)
Latency vs. Throughput
Cost vs. Resilience Plan for 2x
Complexity vs. Maintainability Capacity planning is cheaper than outages.

Bot Army Engineering | NALSD Framework Sources: Google SRE, Capacity Planning Best Practices Capacity & Release

Designing for Recovery

Recovery Principles, Breakglass & Emergency Access

Infrastructure Reliability | Technical Operations Excellence

3-2-1

<15m

O MPA

BACKUP RULE TIER-0 RTO TIER-0 RPO MULTI-PARTY AUTH
RECOVERY DESIGN PRINCIPLES BREAKGLASS PROCEDURES
PRINCIPLE APPLICATION MECHANISM PURPOSE
Go fast, guarded Speed with policy guardrails Breakglass Override normal access controls
Minimize time deps Don't wait for wall-clock MPA Multi-party authorization
Know intended state Encode complete configuration Offline creds Independent of primary systems
Test restores Untested backups = no backups Temp access Time-bounded elevation
Document business justification for all elevated access
EMERGENCY ACCESS MUST-HAVES
3-2-1BACKUP STRATEGY
- Work when systems fail: Independent channel
3 Copies Pre-staged credentials: Not just-in-time during crisi
Original + 2 backups minimum - Pre-staged credentials: Not just-in-time during crisis
- Tested regularly: Part of disaster drills
2 Media Types - Audit trail: All access logged
Different storage technologies
1Offsite
Geographic separation
DISASTER VALIDATION
EXERCISE FREQUENCY
Tabletop Monthly
Failover drill Quarterly
RTO & RPO TARGETS Full DR test Annually
TIER SYSTEMS RTO RPO Chaos experiments Continuous
(o] Critical APIs <15m 0
1 Core services <4h <1h
Internal tools <24h <4h
3 Dev/test <72h <24h

RECOVERY TESTING

- Quarterly: Full restore drill for Tier-0
- Monthly: Point-in-time recovery test
- Weekly: Backup integrity verification
- Daily: Automated backup monitoring

Bot Army Engineering | Designing for Recovery

RECOVERY CHECKLIST

- ¢ Runbooks documented and tested
- v Contact list current
- v Backup restore verified

- v Failover procedure practiced

Plan to Fail

The best recovery is the one you've practiced.

Sources: Google SRE, NIST DR Guidelines, Building Secure Systems

Infrastructure Reliability

Infrastructure Reliability

Kubernetes, Databases, TSDB & Observability Backends

Infrastructure | Technical Operations Excellence

3 N+2

IaC

mTLS

K8S PROBES REDUNDANCY GITOPS PATTERN SERVICE MESH
KUBERNETES RELIABILITY SECRETS MANAGEMENT
COMPONENT PURPOSE KEY CONFIG HashiCorp Vault core capabilities:
HPA Scale pods out CPU/memory targets FEATURE BENEFIT
VPA Right-size pods updateMode: Off Dynamic secrets Short-lived, on-demand
PDB Protect availability minAvailable: 2

HPA + VPA conflict on same metrics - use VPA in recommend-only

mode

Encryption as a service
Identity-based access

Audit logging

Transit secrets engine
RBAC, namespaces

SIEM integration

KUBERNETES PROBES

PROBE PURPOSE

Startup Container started
Liveness Container running
Readiness Ready for traffic

WHEN
First (slow apps)
Catch deadlocks

Load balancer

Liveness: lightweight checks. Let fatal errors crash, don't restart.

SERVICE MESH

FEATURE BENEFIT
mTLS Encrypted service-to-service
Traffic mgmt Canary, A/B, retries

Observability

Circuit breaking

Distributed tracing

Prevent cascade failures

Start simple; add mesh when complexity justifies overhead

DATABASE RELIABILITY

PATTERN
Read replicas
Multi-AZ
Sharding

Connection pooling

USE CASE

Scale read traffic
HA failover
Horizontal scale

Limit connections

Replication # Backup - corrupt data replicates everywhere

OBSERVABILITY BACKENDS

SIGNAL 0SS STACK
Metrics Prometheus, Mimir
Logs Loki, OpenSearch
Traces Tempo, Jaeger

KEY FEATURE
PromQL, federation
LogQL, labels

Trace correlation

Grafana unifies all three signals in one Ul

RESOURCE MANAGEMENT

RESOURCE LIMIT STRATEGY

CPU Requests = P50, Limits = P99
Memory Request = Limit (no OOM)
Ephemeral Limit to prevent node evict

Profile in production to set accurate requests

Bot Army Engineering | Infrastructure Reliability

TIME SERIES DATABASES

TSDB BEST FOR

InfluxDB 10T, high cardinality
Prometheus K8s metrics, alerts

kdb+ Finance, ultra-low latency

VictoriaMetrics

Long-term retention

Cattle, Not Pets

Infrastructure should be reproducible and replaceable.

Sources: Google SRE, Kubernetes Docs, HashiCorp

Infrastructure

Kubernetes Patterns

Foundational, Behavioral, and Structural Patterns

Infrastructure | Technical Operations Excellence

G /
0,
4 25+ 2014 92%
PATTERN CATEGORIES DESIGN PATTERNS K8S RELEASED ENTERPRISE ADOPTION
FOUNDATIONAL PATTERNS OPERATOR PATTERN

PATTERN PURPOSE Operators encode operational knowledge as software, automating

Health Probe Liveness, readiness, startup checks day-2 operations.

Predictable Demands Resource requests/limits

- Custom Resource: Domain-specific API

Automated Placement Node selectors, affinity rules ~. Controller: Reconciliation logic
Declarative Deployment Desired state via manifests - Levels: Basic install - Full lifecycle
RESILIENCE PATTERNS
BEHAVIORAL PATTERNS PATTERN K8S IMPLEMENTATION
PATTERN USE CASE Self-Healing Restart policy, pod disruption budget
Batch Job Run-to-completion workloads Scaling HPA, VPA, cluster autoscaler
Periodic Job CrondJobs for scheduled tasks Rolling Updates Eepioymentistategy
Daemon Service Per-node agents (logging, monitoring) Blue-Green Service selector switch
Singleton Service Leader election, exactly one instance Canary Weighted traffic split
Stateful Service Ordered, sticky identity (StatefulSet)

SECURITY PATTERNS

PATTERN IMPLEMENTATION
Least Privilege RBAC, SecurityContext
STRUCTURAL PATTERNS
Network Isolation NetworkPolicy
PATTERN DESCRIPTION
Secret Management External Secrets Operator
Init Container Setup tasks before main container .
Pod Security PSS/PSA, read-only root
Sidecar Extend without modifying main app
Ambassador Proxy for external communication
Adapter Normalize heterogeneous output
OBSERVABILITY PATTERNS
- Sidecar logging: Fluentbit, Fluent-bit
- Service mesh: Istio, Linkerd for tracing
- Metrics: Prometheus ServiceMonitor
CONFIGURATION PATTERNS - Events: K8s event exporter
PATTERN USE FOR
EnvVar Config Simple key-value settings
ConfigMap Non-sensitive config files
Secret Sensitive data (encrypted) Declarative Operations
Immutable Config Version-pinned configurations Define desired state; let Kubernetes reconcile.

Bot Army Engineering | Kubernetes Patterns Sources: K8s Patterns (Ibryam & Huss), CNCF Infrastructure

Platform Engineering

Internal Developer Platforms, Golden Paths & Self-Service

Infrastructure | Technical Operations Excellence

N\ S/
o)
80% <10m 0] IDP
GOLDEN PATH USE ENV PROVISION TICKETS TO DEPLOY INTERNAL PLATFORM
PLATFORM ENGINEERING GOALS SELF-SERVICE CAPABILITIES
GOAL OUTCOME CAPABILITY NO TICKET
Reduce cognitive load Devs focus on features Environment v API/CLI provision
Standardize tooling Consistency at scale Database v Catalog request
Self-service No ticket queues Secrets v Vault self-serve
Paved roads Easy path for 80% cases Monitoring v Auto-instrumented
Domains/TLS v Cert-manager

INTERNAL DEVELOPER PLATFORM PLATEORM MATURITY

Developer Portal LEVEL CHARACTERISTICS
Backstage, Port, Cortex - service catalog & docs

1. Provisional Tribal knowledge, manual
CI/CD Pipeline 2. Managed Documented, some automation
Standardized builds, tests, deployments .

3. Defined Self-service, golden paths
Infrastructure Abstraction 4. Optimized Metrics-driven, evolving
Crossplane, Terraform modules, GitOps

PLATFORM SUCCESS METRICS

GOLDEN PATHS - Time to first deploy: New dev productivity

. - Golden path adoption: >80% target
Pre-built, tested, supported paths for common tasks: P P E

- Ticket reduction: Fewer ops requests
- New service: Template - CI/CD - observability

- Developer NPS: Platform satisfaction
- Database: Request - provision — connect

- Secrets: Vault integration — auto-rotation
- Deployment: Git push — canary - production

Optional, not mandatory. Compelling, not mandated.

ANTI-PATTERNS TO AVOID

- Mandated use: Force Kills adoption
- No feedback loop: Building in isolation

- Feature bloat: Too much, too complex

PLATEORM TEAM MODEL - Shadow IT: Teams route around you
ASPECT APPROACH
Mindset Treat devs as customers
Feedback Regular user research
Roadmap Based on dev pain points

Paved Roads, Not Walled Gardens

Success Adoption rate, not features Make the right way the easy way.

Bot Army Engineering | Platform Engineering Sources: Team Topologies, CNCF Platforms, Spotify Infrastructure

Al/ML Operations

Model Serving, LLM Observability & Drift Detection

Al/ML Operations | Technical Operations Excellence

<1% >90%

HALLUCINATION TARGET TASK COMPLETION

>98%

TOOL ACCURACY

<5%

HUMAN ESCALATION

LLM OBSERVABILITY

Traditional observability measures infrastructure. LLM
observability measures:

DIMENSION QUESTION

Behavior Is the model doing what we expect?
Quality Are outputs accurate, helpful, safe?
Reasoning Is the chain-of-thought sound?

BOT PERFORMANCE METRICS

METRIC TARGET
Task Completion Rate >90%
Tool Call Accuracy >98%
Context Utilization >70%
Hallucination Rate <1%
Human Escalation <5%

HALLUCINATION DETECTION

SelfCheckGPT

LLM-as-Judge
Use another LLM to evaluate groundedness against retrieved context.

CLAP

Sample multiple completions, check consistency. Inconsistent facts = hallucination.

Cross-Layer Attention Probing - classifier on model activations (open-source only).

DRIFT DETECTION
TYPE
Data Drift

Concept Drift
Model Drift

WHAT TO WATCH
Input distribution shifts
Relationship changes

Prediction quality decay

Monitor production predictions vs training distribution continuously

CHAIN-OF-THOUGHT MONITORING

ASPECT QUESTION

Faithfulness Does CoT reflect actual reasoning?
Verbosity Is reasoning externalized?
Readability Can humans understand it?
Necessity Is CoT required for complexity?

CoT most relevant when task is difficult enough to externalize
reasoning

LLM OBSERVABILITY PLATFORMS

PLATFORM
Langfuse
Arize Phoenix

LangSmith

STRENGTH 0Ss?
Tracing, evals Yes
RAG analysis Yes
LangChain native No

TRAINING PIPELINES

STAGE RELIABILITY PRACTICE

Data Ingest Schema validation, drift checks
Feature Store Versioning, consistency

Training Checkpointing, resource limits
Eval Automated benchmarks, holdouts

MODEL SERVING

- Canary deploys: A/B test model versions

- Shadow mode: Compare new vs old without impact

- Circuit breakers: Fallback to cached/simpler model

- GPU monitoring: Utilization, memory, thermals

Observe the Reasoning

Al reliability requires new observability primitives.

Bot Army Engineering | Al/ML Operations Sources: Langfuse, Arize Al, Datadog LLM Observability Al/ML Operations

Agentic Operations

Al Agents, Self-Healing Systems & Human-Bot Collaboration

Agentic Operations | Technical Operations Excellence

S /
0 (v 0
70% 60% 16% $32B
AUTO-RESOLUTION SELF-HEALING BY '26 TRUE AGENTS TODAY AIOPS MARKET '28
AIOPS EVOLUTION HUMAN-BOT COLLABORATION
LEVEL CAPABILITY ACTION

M-Shaped Supervisors

Reactive Respond to incidents Alert triage, runbooks Humans oversee multiple specialized bots, intervening strategically
Proactive Prevent incidents Trend analysis, SLO watch Tiered Autonomy

Predictive Anticipate issues Anomaly detection, ML Low-risk: full autonomy. High-risk: human approval required
Autonomous Self-heal Auto-remediate, adapt

40% fewer outages + 45% faster MTTR with SRE + AlOps (Gartner)

MULTI-AGENT ORCHESTRATION

PATTERN DESCRIPTION
SELF-HEALING SYSTEMS Puppeteer Manager bot coordinates specialists
))] Specialist Deep expertise in narrow domain
By 2026, over 60% of large enterprises will have self-healing systems
powered by AlOps. Reviewer Quality gate before actions
- Gartner Escalation Bot-to-bot, then bot-to-human

- Restart containers automatically
- Cycle unhealthy nodes
- Shift traffic from degraded services

- Recreate failed pods

AUTO-RESOLUTION TARGETS

PHASE TARGET SCOPE
Phase 3 70% Known issues
Phase 5 90% All incidents

AGENT MATURITY REALITY
Zero manual escalations for known issues

DEPLOYMENT TRUE AGENTS
Enterprise 16%
Startups 27%

True agent = LLM that plans, executes, observes feedback,
and adapts Al AS AMPLIFIER

40% of agentic initiatives may fail by 2027 due to unclear ROI "Al magnifies existing organizational strengths and
weaknesses. Al adoption improves throughput but also
increases delivery instability."

- DORA Report

PRODUCTIVITY IMPACT

ACTIVITY Al IMPROVEMENT

Documentation 45-50% faster

Code Generation 35-45% faster Bots as Teammates
Refactoring 20-30% faster Autonomy within guardrails, escalation as exception.

Bot Army Engineering | Agentic Operations Sources: Gartner AlOps, DORA Report, O'Reilly Signals Agentic Operations

People & Culture

Westrum Culture, Team Topologies & Sustainable Operations

People & Cuiture | Technical Operations Excellence

G /
0,
30% 4 3 <2
GENERATIVE BOOST TEAM TYPES INTERACTION MODES PAGES/SHIFT TARGET
WESTRUM CULTURE TYPES BLAMELESS CULTURE

TYPE CHARACTERISTICS PERFORMANCE Blameless postmortems focus on systems, not individuals. The goal is
Pathological Power-oriented, fear Low learning, not punishment.
Bureaucratic Rule-oriented, silos Medium s
Generative Performance-oriented +30% — Psychological safety: Speak up without fear

Generative cultures: high cooperation, messengers welcomed, failures - Just culture: Distinguish error from recklessness

lead to inquiry - Learning reviews: Focus on "how" not "who"

ON-CALL SUSTAINABILITY

METRIC TARGET
Pages per shift <2

Interrupt ratio <25%
Rotation size 6-8 engineers
Max consecutive days 3-4 days

KEY ERAMEWORKS Burnout risk: >2 pages/night or >25% interrupt work

FRAMEWORK CORE CONCEPT
Three Ways Flow, Feedback, Learning
Team Topologies 4 team types, 3 modes
.) SRE CORE COMPETENCIES
Five Ideals Locality, Flow, Improvement
Conway's Law Teams mirror architecture IESRITIEAL DICIHITECETRTIEAL
.) Distributed systems Communication
See dedicated pages for deep dives on each framework
Observability Incident command
Automation Documentation
Networking Collaboration

TEAM HEALTH SIGNALS

- Healthy: Proactive improvements, low burnout
- Warning: Increasing toil, delayed projects
- Unhealthy: High turnover, reactive only

SRE TEAM MODELS

MODEL BEST FOR

Centralized Shared expertise, standards

Embedded Deep product context Culture Eats Strategy

Hybrid Balance of both approaches Generative culture is the foundation of elite performance.

Bot Army Engineering | People & Culture Sources: Westrum, Team Topologies, Phoenix Project, DORA People & Culture

On-Call Excellence

Sustainable Rotations, Escalation Paths & Alert Quality

People & Cuiture | Technical Operations Excellence

N\ S/
o)
<2 6-8 <25% 24/7
PAGES/SHIFT ROTATION SIZE INTERRUPT RATIO COVERAGE
HEALTHY ON-CALL METRICS ALERT QUALITY GATES
METRIC TARGET WARNING GATE REQUIREMENT
Pages/shift <2 >5 Actionable Clear remediation steps
Interrupt ratio <25% >50% Urgent Needs human intervention now
Night pages 0 >1 Documented Runbook link in alert
False positives <10% >30% Tuned <10% false positive rate
High alert volume = burnout risk. Fix alerts, not engineers. If it doesn't page, make it a ticket. If it's noise, delete it.

HANDOFF CHECKLIST

ROTATION DESIGN - Active incidents briefed
PARAMETER RECOMMENDATION = ¥ Recent deployments noted
. . . - v Pending changes flagged

Team size 6-8 engineers minimum

- v Known issues documented
Shift length Max 3-4 consecutive days . .

- ¢ Contact info verified
Handoff Overlapping 30-min window
Shadow period 2 weeks for new members

BURNOUT PREVENTION

SIGN INTERVENTION
Dreading shifts Review alert load
ESCALATION TIERS Constant fatigue Extend rotation gaps
L1: Primary On-Call Cynicism Pair with supportive peer

First responder, initial triage, known fixes . .
9 Avoidance Temporary rotation break

L2: Secondary/SME
Domain expert, complex issues, escalation

L3: Management
SEV1 coordination, customer comms, exec updates

CONTINUOUS IMPROVEMENT

- Weekly: Review noisy alerts, tune or delete
- Monthly: On-call retrospective

- Quarterly: Rotation structure review

COMPENSATION & FAIRNESS

- Comp time: Time off after heavy shifts

- Pay differential: Extra pay for on-call hours
- Equitable rotation: Fair holiday distribution Sustainable On-Call

- Opt-out option: Accommodations for burnout Great on-call is boring on-call. Fix the system, not the people.

Bot Army Engineering | On-Call Excellence Sources: Google SRE, PagerDuty State of On-Call, Honeycomb People & Culture

Three Ways of DevOps

Flow, Feedback, and Continuous Learning

People & Cuiture | Technical Operations Excellence

3 4

CORE PRINCIPLES

TYPES OF WORK

9 2009

FIVE IDEALS DEVOPS MOVEMENT

THE FIRST WAY: FLOW

Optimize for fast left-to-right flow from Development to Operations to
the customer.

- Make work visible

- Reduce batch sizes

- Reduce handoffs

- ldentify and elevate constraints

- Eliminate waste and hardships

FIVE IDEALS (UNICORN PROJECT)

IDEAL MEANING
Locality Teams own end-to-end

Focus & Flow Minimize interruptions

Improvement Daily practice, not events
Safety Safe to experiment and fail
Customer Focus Outcomes over output

THE SECOND WAY: FEEDBACK

Enable fast and constant right-to-left feedback at every stage.

- Create quality at source

- Amplify feedback loops

- Swarm and solve problems
- Push quality closer to source

- Stop the line for defects

ANTI-PATTERNS TO AVOID

ANTI-PATTERN SYMPTOM

Hero Culture Single person knows system
Wall of Confusion Dev throws over to Ops
Ticket Queue Long waits for changes
Change Freeze Fear of deployments

Blamestorming Punishing failures

THE THIRD WAY: LEARNING

Create a culture of continual experimentation, learning from success
and failure.

- Enable organizational learning

- Institutionalize improvement

- Transform local discoveries into global
- Reserve time for improvement

- Create a safe environment to fail

KEY METRICS ALIGNMENT

WAY KEY METRICS
Flow Lead time, deploy freq
Feedback CFR, MTTR, test coverage

Learning Experiments, postmortems

Bot Army Engineering | Three Ways of DevOps

FOUR TYPES OF WORK

TYPE PRIORITY

Business Projects Strategic value

Internal IT Projects Infrastructure
Changes Maintenance
Unplanned Work Minimize!

DEVOPS DEFINITION

DevOps is the outcome of applying the most trusted principles from
physical manufacturing to IT.
- The DevOps Handbook

DevOps is a Philosophy

SRE implements DevOps with engineering rigor.

Sources: Phoenix Project, DevOps Handbook, Unicorn Project

People & Culture

Team Topologies

Organizing Business and Technology Teams

People & Cuiture | Technical Operations Excellence

G /
TEAM TYPES INTERACTION MODES IDEAL TEAM SIZE CONWAY'S LAW
4 FUNDAMENTAL TEAM TYPES TEAM TYPE DISTRIBUTION
Stream-Aligned Team TYPE TYPICAL RATIO
Aligned to a single stream of work (product, feature, service) Stream-AIigned 60-80%
Platform Team Platform 10-15%
Provides internal services to reduce cognitive load Enabling 5-10%
Enabling Team Complicated-Subsystem 0-5%

Helps stream-aligned teams adopt new capabilities . L
Stream-aligned should always be the majority

Complicated-Subsystem Team
Deep expertise for complex components

PLATFORM TEAM PRINCIPLES

- Self-service: Teams can provision without tickets

- Paved roads: Easy path for 80% use cases

3 INTERACTION MODES - Optional: Not mandated, but compelling

MODE WHEN TO USE - Thin interface: Hide complexity behind APIs
Collaboration Discovery, rapid innovation - Product mindset: Treat teams as customers
X-as-a-Service Clear API, reduce cognitive load

Facilitating Coaching, capability building

Warning: Collaboration is expensive; use sparingly

SRE TEAM MODELS

MODEL TOPOLOGY
Centralized SRE Enabling + Platform hybrid
Embedded SRE Part of Stream-Aligned
CONWAY'S LAW Hybrid Core platform + consulting
Organizations design systems that mirror their own communication
structure.
- Melvin Conway, 1968
Inverse Conway Maneuver: Design teams to get the DUNBAR'S NUMBER
architecture you want GROUP SIZE
Close team 5-9 people
Trust group 15 people
Clan/tribe 50 people
Max relationships 150 people

COGNITIVE LOAD TYPES

TYPE DEFINITION

Intrinsic Inherent problem complexity

Extraneous Environmental/tooling noise Teams Over Individuals
Germane Valuable learning investment Minimize cognitive load, maximize flow.

Bot Army Engineering | Team Topologies Sources: Team Topologies (Skelton & Pais), Conway's Law People & Culture

Industry Leaders

Lessons from Google, Netflix, NASA & Beyond

Industry Leaders | Technical Operations Excellence

50% 100s

5 6

GOOGLE ENG CAP NETFLIX DEPLOYS/DAY HRO PRINCIPLES AWS PILLARS
GOOGLE SRE PRINCIPLES INDUSTRY BEST PRACTICES
PRINCIPLE APPLICATION COMPANY KEY CONTRIBUTION
50% Rule Max 50% time on ops/toil Amazon Well-Architected (6 pillars)
Error Budgets Balance reliability vs velocity Meta Production Eng, SEV culture
SLO-based Objective reliability targets Spotify Squads/Tribes, golden paths
Blameless Focus on systems, not people Toyota Kaizen, Jidoka, JIT

class SRE implements interface DevOps

NETFLIX CHAOS ENGINEERING

"Avoid failure by failing constantly"

ToOL WHAT IT DOES

Chaos Monkey Randomly kills instances
Latency Monkey Injects network delays
Chaos Gorilla Simulates AZ failure

2014 AWS outage: 10% of servers affected; Netflix ran uninterrupted

MISSION-CRITICAL LESSONS

INDUSTRY LESSON

NASA Checklists, redundancy, simulation
Aviation Crew resource mgmt, near-miss analysis
Nuclear Defense in depth, safety culture
Finance Ultra-low latency, compliance

SRE EVOLUTION

ERA PERIOD FOCUS
Chaos Years 1990-2005 Cowboy ops
DevOps 2005-2015 Automation
SRE 2014-2018 Reliability
Platform 2018-Now Developer UX

HIGH-RELIABILITY ORGS

5 principles from aviation, nuclear, healthcare:

- Preoccupation with Failure
- Reluctance to Simplify

- Sensitivity to Operations

- Commitment to Resilience
- Deference to Expertise

See HRO Pattern Recognition for deep dive

TOOL EVOLUTION

- 2000s: Nagios, Puppet, Chef
- 2010s: Docker, K8s, Prometheus, Terraform
- 2020s: OpenTelemetry, GitOps, Al/ML Ops

KEY TAKEAWAYS

- Automate everything: Eliminate manual toil
- Embrace failure: Practice makes resilient

- Measure what matters: SLOs drive decisions
- Culture first: Blameless enables learning

Learn from the Best

Adopt practices, not just tools.

Bot Army Engineering | Industry Leaders Sources: Google SRE, Netflix, DORA, HRO Research

Industry Leaders

Implementation Roadmap

5-Phase Journey to Al-Native Operations

Strategic Roadmap | Technical Operations Excellence

N\ S/
o) o)
5 12 90% 99.9%

PHASES MONTHS AUTO-RESOLUTION GOAL AVAILABILITY TARGET
PHASE 1: FOUNDATION (MONTH 1-2) PHASE 5: EXCELLENCE (MONTH 9-12)
Objective: Establish core operational capabilities Objective: World-class operations, continuous improvement
- Deploy Grafana Alerting - Cloud migration enablement (AWS/GCP)
- Implement PagerDuty integration - Multi-region resilience
- Create incident response playbooks - Full OpenTelemetry instrumentation
- Build runbook automation framework - Autonomous operations (zero-touch)

- Establish on-call rotation Metrics: 99.9% availability, <30s MTTA, 90% auto-resolution

Metrics: Alerting live, <15m MTTA, top 10 runbooks

SUCCESS METRICS JOURNEY

PHASE 2: RELIABILITY (MONTH 3-4)

METRIC START END
Objective: Achieve target SLOs and error budget governance Availability 95% 99.9%
— Error budget dashboard & automation MTTA Hours <30s
- Post-mortem workflow automation Auto-Resolution 0% 90%
- Feature flags infrastructure Toil >80% <30%

- First chaos engineering GameDay
- Canary deployment pipeline

Metrics: 99.0% availability, 95% success rate

BOT ARMY OWNERS

BOT PRIMARY RESPONSIBILITY
Ops Bot Incident response, runbooks
PHASE 3: AUTOMATION (MONTH 5-6) -
SRE Bot Resilience, deployments
Objective: Reduce toil below 50%, increase auto-resolution Observability Bot Metrics, alerting, dashboards
- Automated incident triage Security Bot Compliance, secrets

- Self-healing runbooks (top 5 alerts)
- Capacity auto-scaling
- Compliance automation

Metrics: 70% auto-resolution, toil <50% KEY MILESTONES

- Month 2: First PagerDuty alert fired
- Month 4: First GameDay completed

- Month 6: Self-healing runbooks active
PHASE 4: INTELLIGENCE (MONTH 7-8) ~ Month 8: Al-powered RCA deployed

Objective: Predictive operations and AlOps = Month 12: Autonomous operations

- Anomaly detection ML models
- Predictive capacity alerting

- Automated root cause analysis

- Al-powered post-mortem generation From Reactive to Autonomous

Metrics: 80% 48hr prediction accuracy, 50% MTTR reduction 12 months to world-class Al-native operations.

Bot Army Engineering | Implementation Roadmap Foundation - Reliability - Automation - Intelligence - Excellence Strategic Roadmap

Automation Paradoxes

Bainbridge's Ironies & Human-Agent Balance

Agentic Operations | Technical Operations Excellence

1983 40%

BAINBRIDGE PAPER AGENTIC Al MAY FAIL

5-10%

EDGE CASES

M-Shaped

NEW SUPERVISOR ROLE

IRONIES OF AUTOMATION

The more advanced automation becomes, the more crucial human
intervention becomes when it fails.

- Lisanne Bainbridge (1983)

Automation doesn't eliminate human involvement - it changes
it.

HUMAN-AGENT BALANCE

Low Risk: Full Autonomy
Routine tasks, easily reversible, well-understood

Medium Risk: Supervised
Complex tasks, human approval required

High Risk: Human-in-Loop
Critical systems, irreversible actions

THE FOUR IRONIES

IRONY DESCRIPTION
Skill Degradation Operators lose skills they don't practice

Automation handles easy cases, leaves hard
ones

Harder Failures

Lost Situational

-of-the-I
Awareness Out-of-the-loop syndrome

When intervention needed, stakes are

Increased Criticality highest

EDGE CASE PROBLEM

SCENARIO
Novelty
Ambiguity
Conflict

Context

CHALLENGE

Bot hasn't seen this before

Multiple valid actions

Competing objectives

Missing business knowledge

5-10% of cases need human judgment - but they're the hardest

SRE AUTOMATION SPECTRUM

LEVEL HUMAN ROLE BOT ROLE
Manual All decisions None
Assisted Decides Suggests
Supervised Approves Executes
Monitored Watches Autonomous
Autonomous Reviews post-hoc Full control

M-SHAPED SUPERVISORS

The new human role: oversee multiple specialized bots

- Broad awareness across domains

- Deep expertise for intervention

- Strategic decision-making

- Exception handling

MAINTAINING HUMAN EXPERTISE

- Wheel of Misfortune: Practice manual interventions
- GameDays: Disable automation, respond manually
- Shadow mode: Watch bot decisions before approval
- Runbook reviews: Understand what bots do

Bot Army Engineering | Automation Paradoxes

WARNING SIGNS

- Complacency: "The bot handles it"

- Skill atrophy: "I forgot how to do that"
- Blind trust: "The bot must be right"

Augment, Don't Replace

The best automation makes humans more capable, not irrelevant.

Sources: Bainbridge (1983), Gartner, Human Factors Research

Agentic Operations

SRE Evolution Timeline

From Sysadmin to Platform Engineering

Historical Perspective | Technical Operations Excellence

G /
60+ 2003 182x 2018
YEARS OF EVOLUTION SRE BORN AT GOOGLE ELITE DEPLOY FREQ PLATFORM ENG ERA
THE ERAS OF OPERATIONS DORA METRICS EVOLUTION
ERA PERIOD CHARACTERISTICS LEVEL DEPLOY FREQ LEAD TIME
Pre-History 1960-1990 Mainframes, UNIX Low Monthly-6mo 6+ months
Chaos Years 1990-2005 Cowboy ops, silos Medium Weekly-Monthly 1-6 months
DevOps 2005-2015 Automation, CI/CD High Daily-Weekly 1 week-1Tmo
SRE 2014-2018 Error budgets, SLOs Elite Multiple/day <1day
Platform 2018-Now Golden paths, DX

Elite: 182x more deploys, 2,293x faster MTTR

PLATFORM ENGINEERING

ROLE EVOLUTION Golden Paths

Paved roads for common workflows

Sysadmin - DevOps - SRE - Platform Engineer

ROLE FOCUS Internal Developer Platforms
. Self-service infrastructure
Sysadmin Manual operations
DevOps Engineer Automation, culture Developer Experience
o . . Reduce cognitive load
SRE Reliability engineering
Platform Engineer Developer experience

SRE CAREER PATHS

IC TRACK MANAGEMENT TRACK
SRE -
TOOL EVOLUTION .

Senior SRE SRE Manager

DECADE TooLs Staff SRE SRE Director

2000s Nagios, Puppet, Chef Principal SRE VP Engineering

2010s Docker, K8s, Prometheus, Terraform

2020s OpenTelemetry, GitOps, Al/ML Ops

THE DEFINITION

"class SRE implements interface DevOps"

- Ben Treynor, Google

KEY MILESTONES

- 2003: Ben Treynor coins "SRE" at Google
- 2009: Flickr "0+ deploys/day" talk

- 2013: Docker released

- 2016: Google SRE Book published What's Next?

- 2018: DORA "Accelerate" published Al-native operations and autonomous systems.

Bot Army Engineering | SRE Evolution Timeline Sources: Google SRE, DORA Research, DevOps History Historical Perspective

