
Technical Operations Excellence
A comprehensive guide to Site Reliability Engineering, Observability, and Platform Operations

34
ONE-PAGERS

10
CORE THEMES

35+
RESEARCH SOURCES

VISION & OVERVIEW

→ Reliability Unleashed — From Chaos to Confidence

SRE FOUNDATIONS

→ SRE Foundations — SLIs, SLOs, Error Budgets

→ DORA 24 Capabilities — DevOps Research Framework

→ SRE Maturity Assessment — Measuring Capabilities

→ SLO Design Framework — Effective Objectives

OBSERVABILITY

→ Observability Mastery — Three Pillars & OTel

→ Multi-Window Alerting — Burn Rate Strategy

→ USE Method — Utilization, Saturation, Errors

→ Observability 2.0 — High Cardinality Events

→ Alert Tuning Playbook — Reducing Noise

RESILIENCE PATTERNS

→ Resilience Patterns — Circuit Breakers, Bulkheads

→ Defense in Depth — Layered Security

→ HRO Patterns — High-Reliability Orgs

→ Release It! Patterns — Stability Patterns

→ Chaos Engineering — GameDay Practices

INCIDENT MANAGEMENT

→ Incident Excellence — Response & Postmortems

→ Learning from Catastrophe — Case Studies

→ Runbook Quick Reference — Templates & Practices

RELEASE & CAPACITY

→ Capacity & Release — DORA, Progressive Delivery

→ NALSD Framework — Large System Design

→ Designing for Recovery — Breakglass Access

INFRASTRUCTURE

→ Infrastructure Reliability — K8s, TSDB, Backends

→ Kubernetes Patterns — K8s Operational Patterns

→ Platform Engineering — Golden Paths, Self-Service

AI/ML & AGENTIC

→ AI/ML Operations — MLOps, Non-Determinism

→ Agentic Operations — Bot Operations, AI Agents

PEOPLE & CULTURE

→ People & Culture — Westrum, Team Topologies

→ On-Call Excellence — Sustainable Rotations

→ Three Ways of DevOps — Flow, Feedback, Learning

→ Team Topologies — Organizing Teams

INDUSTRY & IMPLEMENTATION

→ Industry Leaders — Google, Netflix, NASA

→ Implementation Roadmap — Getting Started

→ Automation Paradoxes — When Automation Hurts

→ SRE Evolution Timeline — History & Future

Bot Army Engineering | Technical Operations Excellence 34 One-Pagers | 10 Core Themes | 35+ Research Sources February 2026

file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/reliability-unleashed.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-foundations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/dora-24-capabilities.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-maturity-assessment.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/slo-design-framework.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/observability-mastery.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/multi-window-alerting.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/use-method-performance.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/observability-2.0.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/alert-tuning-playbook.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/resilience-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/defense-in-depth.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/hro-pattern-recognition.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/release-it-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/chaos-engineering.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/incident-excellence.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/learning-from-catastrophe.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/runbook-quick-reference.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/capacity-release.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/nalsd-framework.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/designing-for-recovery.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/infrastructure-reliability.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/kubernetes-patterns.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/platform-engineering.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/ai-ml-operations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/agentic-operations.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/people-culture.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/oncall-excellence.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/three-ways-devops.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/team-topologies.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/industry-leaders.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/implementation-roadmap.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/automation-paradoxes.html
file:///data/ai/claude/feat/presentations/tech-ops-excellence/docs/one-pagers/sre-evolution-timeline.html

1 DORA State of DevOps 2023 (elite vs low performers) 2 Target based on industry AIOps benchmarks

Bot Army Engineering | Technical Operations Excellence Sources: DORA Research, Google SRE, HRO Studies February 2026

Reliability Unleashed
From Chaos to Confidence

Vision & Overview | Technical Operations Excellence

182x
MORE DEPLOYS 1

2,293x
FASTER RECOVERY 1

70%
AUTO-RESOLUTION 2

35+
RESEARCH SOURCES

WHAT IS SRE?

SRE is what happens when you ask a software engineer to design an
operations team.

- Google SRE Book

"

DevOps is the philosophy; SRE is the implementation→

50% engineering / 50% operations cap (max toil)→

Error budgets govern release velocity→

10 CORE THEMES

THEME FOCUS

1 Foundations SLOs, error budgets, toil

2 Observability Three pillars, OTel, alerting

3 Resilience Patterns, blast radius, defense

4 Incidents Response, postmortems, HRO

5 Release CI/CD, progressive delivery

6 Infrastructure K8s, IaC, platform engineering

7 AI/ML Ops Non-determinism, drift, MLOps

8 Agentic Ops Bot operations, autonomy

9 Culture Teams, on-call, sustainability

10 Industry Case studies, benchmarks

DORA ELITE BENCHMARKS

METRIC ELITE LOW

Deploy Frequency On-demand > 6 months

Lead Time < 1 day > 6 months

Change Failure 0-15% > 30%

MTTR < 1 hour > 6 months

Source: DORA State of DevOps 2024 - 36,000+ professionals

FOUR GOLDEN SIGNALS

Latency How fast?

Traffic How much?

Errors Failing?

Saturation How full?

Reliability is a Feature

Users don't distinguish between "the app is slow" and "the app is broken"

From Alert Fatigue to Autonomous Operations

70% auto-resolution | 30-second MTTD | <2 pages per on-call shift

THREE PILLARS OF OPERATIONS

Reactive

Respond to incidents,
triage alerts, execute
runbooks

Proactive

Trend analysis, capacity
planning, SLO monitoring

Predictive

Anomaly detection, AIOps,
chaos engineering

GUIDING PHILOSOPHY

Learn from industries where failure means lives lost.

- HRO Research

"

Blameless culture: Focus on systems, not individuals→

Embrace complexity: Simple explanations often miss root cause→

Authority to expertise: Knowledge trumps hierarchy in crisis→

SRE MATURITY JOURNEY

LEVEL STATE CHARACTERISTICS

1 Ad-Hoc Reactive, firefighting

2 Foundational Basic monitoring, SLOs

3 Standardized IaC, CI/CD, postmortems

4 Advanced Predictive, chaos, AIOps

5 Optimized Autonomous operations

KEY ACRONYMS

SLI/SLO/SLA Indicator / Objective / Agreement

MTTR/MTTD Mean Time to Recover / Detect

DORA DevOps Research & Assessment

HRO High-Reliability Organization

Bot Army Engineering | SRE Foundations Sources: Google SRE Book, SRE Workbook, DORA SRE Foundations

SRE Foundations
SLIs, SLOs, Error Budgets & The Philosophy of Reliability

SRE Foundations | Technical Operations Excellence

50%
MAX TOIL CAP

99.9%
TYPICAL SLO

43m
ERROR BUDGET/MO

4
GOLDEN SIGNALS

THE CORE PHILOSOPHY

Hope is not a strategy.

- Google SRE Book

"

class SRE implements interface DevOps→

Apply engineering discipline to operations→

Balance reliability with feature velocity→

Measure everything; improve continuously→

SLI / SLO / SLA HIERARCHY

TERM DEFINITION EXAMPLE

SLI Service Level Indicator Request latency P99

SLO Service Level Objective P99 < 200ms

SLA Service Level Agreement 99.9% or credits

SLOs should be stricter than SLAs for early warning

ERROR BUDGET MATH

SLO BUDGET MONTHLY

99% 1% 7.2 hours

99.9% 0.1% 43.2 minutes

99.95% 0.05% 21.6 minutes

99.99% 0.01% 4.32 minutes

99.999% 0.001% 26.3 seconds

Each 9 costs 10x more - choose wisely

ERROR BUDGET POLICY

Healthy (>50%)

Ship features freely, accept calculated risks

Warning (25-50%)

Prioritize reliability, increase review rigor

Critical (<25%)

Feature freeze, focus exclusively on stability

THE FOUR GOLDEN SIGNALS

SIGNAL MEASURES QUESTION

Latency Request time How fast?

Traffic System demand How much?

Errors Failed requests Failing?

Saturation Utilization How full?

If you can only measure four things, measure these

TOIL: THE ENEMY OF SRE

Toil = manual, repetitive, automatable work that scales linearly

with service growth

TOIL NOT TOIL

Manually restarting services Writing automation

Copy-paste deployments Designing CI/CD

Manual scaling Auto-scaling policies

Repetitive tickets Self-service tools

<50% MAX TOIL (GOOGLE RULE)

WHAT IS TOIL?

CHARACTERISTIC EXAMPLE

Manual Human runs script

Repetitive Done frequently

Automatable No judgment needed

Tactical Interrupt-driven

No lasting value Doesn't improve system

Google SRE: Cap toil at 50% of time; invest the rest in engineering

SLO CATEGORIES

Availability % successful requests

Latency % under threshold

Throughput Requests processed

Freshness Data staleness

Error Budgets Enable Innovation

When healthy, take risks. When depleted, stabilize.
It's data for decisions, not punishment.

Bot Army Engineering | DORA 24 Capabilities Sources: DORA State of DevOps 2024, Accelerate Book Performance Metrics

DORA 24 Capabilities
The Science of Software Delivery Performance

Performance Metrics | Technical Operations Excellence

5
CAPABILITY CATEGORIES

24
CORE CAPABILITIES

182x
ELITE DEPLOY FREQ

36K+
SURVEY RESPONDENTS

THE 4 KEY METRICS

METRIC ELITE LOW

Deployment Frequency On-demand >6 months

Lead Time for Changes <1 day >6 months

Change Failure Rate 0-15% >64%

MTTR <1 hour >6 months

Elite performers: 182x more deploys, 2,293x faster recovery

TECHNICAL CAPABILITIES (8)

CAPABILITY

1 Version control

2 Deployment automation

3 Continuous integration

4 Trunk-based development

5 Test automation

6 Database change management

7 Shift left on security

8 Loosely coupled architecture

CULTURAL CAPABILITIES (5)

CAPABILITY

9 Generative culture (Westrum)

10 Job satisfaction

11 Learning culture

12 Transformational leadership

13 Work-life balance

PROCESS CAPABILITIES (3)

CAPABILITY

14 Work visibility

15 Working in small batches

16 Team experimentation

MEASUREMENT CAPABILITIES (4)

CAPABILITY

17 Monitoring & observability

18 Proactive failure notification

19 WIP limits

20 Visualizing work

PRODUCT CAPABILITIES (4)

CAPABILITY

21 Customer feedback

22 Value stream visibility

23 Working in flow state

24 User research integration

IMPROVEMENT PATHWAYS

Start: Automation

CI/CD, version control, test automation

Then: Architecture

Loosely coupled, trunk-based, small batches

Finally: Culture

Generative culture, learning, leadership

KEY INSIGHT

You can't buy your way to high performance. Culture and practices
matter more than tools.

- DORA Research

"

Continuous Improvement

The journey to elite performance is incremental.

Bot Army Engineering | SRE Maturity Assessment Sources: Google SRE, DORA, Industry Best Practices Strategic Roadmap

SRE Maturity Assessment
Measuring and Improving SRE Capabilities

Strategic Roadmap | Technical Operations Excellence

15
ASSESSMENT DOMAINS

450
MAX POINTS

5
MATURITY LEVELS

Q
QUARTERLY REVIEW

15 ASSESSMENT DOMAINS

DOMAIN MAX POINTS

1 SLOs & Error Budgets 30

2 Observability 30

3 Incident Management 30

4 Postmortems 30

5 Toil Reduction 30

6 Capacity Planning 30

7 Change Management 30

8 CI/CD Pipeline 30

9 Disaster Recovery 30

10 Security 30

11 Documentation 30

12 On-Call 30

13 Chaos Engineering 30

14 Culture 30

15 Platform 30

5 MATURITY LEVELS

LEVEL NAME SCORE

1 Ad-hoc 0-90

2 Foundational 91-180

3 Standardized 181-270

4 Advanced 271-360

5 Optimized 361-450

SCORING GUIDE (PER DOMAIN)

SCORE CRITERIA

0-6 No formal practice

7-12 Basic/reactive approach

13-18 Documented processes

19-24 Proactive, measured

25-30 Optimized, automated

PRIORITY ACTION PLANNING

High Impact, Low Effort

Quick wins: implement first

High Impact, High Effort

Strategic: plan carefully

Low Impact

Deprioritize or defer

RADAR CHART DOMAINS

Core SRE: SLOs, observability, incidents, postmortems→

Automation: CI/CD, toil reduction, platform→

Resilience: Capacity, DR, chaos, security→

Culture: On-call, documentation, culture→

ASSESSMENT CADENCE

ACTIVITY FREQUENCY

Full assessment Quarterly

Progress review Monthly

Action items Weekly tracking

Stakeholder report Quarterly

COMMON GAPS

DOMAIN TYPICAL ISSUE

SLOs No error budgets enforced

Postmortems Blame-focused reviews

On-Call Alert fatigue, burnout

Chaos No regular practice

Measure to Improve

What gets measured gets managed.

Bot Army Engineering | SLO Design Framework Sources: Google SRE, SRE Workbook, Implementing SLOs SRE Foundations

SLO Design Framework
From SLI to SLA: Building Meaningful Reliability Targets

SRE Foundations | Technical Operations Excellence

3
SLI/SLO/SLA TIERS

99.9%
COMMON TARGET

8.76hr
ANNUAL BUDGET (99.9%)

30d
ROLLING WINDOW

SLI → SLO → SLA HIERARCHY

TERM DEFINITION OWNER

SLI Metric that measures service Engineers

SLO Target value for the SLI SRE/Product

SLA Contract with consequences Business/Legal

Rule: SLO should be stricter than SLA (buffer for internal response)

COMMON SLI TYPES

TYPE SLI FORMULA

Availability Successful requests / Total requests

Latency Requests < threshold / Total requests

Throughput Requests served / Time period

Correctness Correct responses / Total responses

Freshness Data age < threshold / Total reads

TARGET SELECTION GUIDE

TARGET MONTHLY DOWNTIME USE CASE

99% 7.3 hours Internal tools

99.5% 3.6 hours Non-critical services

99.9% 43.8 min Standard production

99.95% 21.9 min Business-critical

99.99% 4.4 min Mission-critical

ERROR BUDGET POLICY

BUDGET STATUS ACTION

>50% remaining Ship features freely

25-50% Ship with caution

<25% Reliability focus only

Exhausted Feature freeze

SERVICE-TYPE PATTERNS

SERVICE TYPE PRIMARY SLIS

User-facing API Availability, latency

Background job Completion rate, freshness

Data pipeline Freshness, correctness

Storage Durability, availability

MULTI-WINDOW SLO

Alert on short windows; report on long windows

30-day: Long-term reliability view→

7-day: Recent trend indicator→

1-day: Acute issue detection→

1-hour: Real-time burn rate→

IMPLEMENTATION CHECKLIST

STEP ACTION

1 Identify critical user journeys

2 Define SLIs for each journey

3 Set initial targets (start conservative)

4 Implement measurement & dashboards

5 Create error budget alerts

6 Establish review cadence

KEY INSIGHT

100% is the wrong target. Choose the reliability that balances user
happiness with development velocity.
"

SLOs Enable Decisions

Error budgets are the currency of reliability.

Bot Army Engineering | Observability Mastery Sources: Observability Engineering, USE Method, OTel Observability

Observability Mastery
Three Pillars, Observability 2.0 & Modern Instrumentation

Observability | Technical Operations Excellence

3
CLASSIC PILLARS

30s
TARGET MTTD

OTel
STANDARD

2.0
NEW PARADIGM

THREE CLASSIC PILLARS

Metrics

Aggregated counts, gauges, histograms. Tools: Prometheus, InfluxDB

Logs

Discrete events, timestamps, stack traces. Tools: Loki, Elasticsearch

Traces

Request flow, spans, latency breakdown. Tools: Tempo, Jaeger

OBSERVABILITY 2.0

CLASSIC (1.0) MODERN (2.0)

Pre-defined metrics Arbitrary queries

Three separate pillars Wide structured events

Dashboard-driven Exploration-driven

Known unknowns Unknown unknowns

Observability is about asking arbitrary questions without shipping new
code.

- Charity Majors, Honeycomb

"

USE METHOD

For every resource: Utilization, Saturation, Errors

RESOURCE U S E

CPU %busy Run queue Errors

Memory %used Swap I/O OOM

Disk %util Queue SMART

Network BW Retrans Errors

SAMPLING STRATEGIES

TYPE WHEN TRADE-OFF

Head At request start Fast, may miss errors

Tail After completion Smart, more overhead

Adaptive Dynamic rate Best of both

Always sample 100% of errors and slow requests

OPENTELEMETRY STANDARD

SIGNAL STATUS FEATURE

Traces Stable W3C context

Metrics Stable Temporality

Logs Stable Trace correlation

Profiling Exp Continuous

traceparent: {version}-{trace-id}-{parent-id}-{flags}

CARDINALITY & COST

ISSUE IMPACT FIX

High cardinality Query slowness Aggregation

Unbounded labels OOM, index boom Label policies

Danger: user_id, request_id in labels

You can't run observability infra the same size as production.

- Liz Fong-Jones

"

RED METHOD

For every service: Rate, Errors, Duration

SIGNAL METRIC QUESTION

Rate req/sec How busy?

Errors fail/sec Breaking?

Duration latency How slow?

INSTRUMENTATION BEST PRACTICES

Instrument at code level, not just infrastructure

Standardize naming: Consistent metric/span names→

Add context: Include service, env, version labels→

Correlate signals: Trace IDs across logs/metrics→

Sample wisely: 100% errors, sample successes→

Debug Unknown Unknowns

Instrument first, decide what to alert later.

Bot Army Engineering | Multi-Window Alerting Sources: Google SRE Workbook, Prometheus Best Practices Observability Deep Dive

Multi-Window Alerting
Burn Rates, SLO-Based Alerts & Alert Attributes

Observability Deep Dive | Technical Operations Excellence

14.4x
CRITICAL BURN RATE

4
ALERT ATTRIBUTES

<2
PAGES/WEEK TARGET

<5%
FALSE POSITIVES

MULTI-WINDOW BURN RATE ALERTS

TYPE BUDGET WINDOW BURN

Page (Critical) 2% / 1h 1h + 5m 14.4x

Page (High) 5% / 6h 6h + 30m 6x

Ticket 10% / 3d 72h + 6h 1x

Dual windows prevent alert flapping while catching fast burns

FOUR ALERT ATTRIBUTES

ATTRIBUTE DEFINITION GOAL

Precision % genuine alerts Minimize FPs

Recall % incidents caught Catch all issues

Detection Time to notify Alert quickly

Reset Time to resolve Auto-clear

BURN RATE FORMULA

BURN RATE BUDGET EXHAUSTION

>5%/day Immediate incident

2-5%/day Investigation needed

<2%/day Normal ops

Burn Rate = (1 - SLO) / Time Window

14.4x = consume 30-day budget in ~2 days

"

ALERT CATEGORIES

CATEGORY RESPONSE WHEN

Page Immediate User impact

Notify Hours Degradation

Ticket Next day Slow drift

Log Review Informational

SYMPTOM VS CAUSE HIERARCHY

User-Facing Symptoms

Error rate, latency, availability - PAGE these

System Symptoms

Queue depth, connection pool - NOTIFY these

Underlying Causes

CPU, memory, disk - TICKET or LOG these

HEALTHY ON-CALL METRICS

METRIC TARGET

Pages per week <2

False positive rate <5%

Off-hours pages <1

Actionable % >95%

NOISE REDUCTION TECHNIQUES

Aggregation: Group related alerts→

Suppression: Mute during maintenance→

Deduplication: Same incident once→

Auto-escalation: After X minutes→

Alert correlation: Link to root cause→

GOLDEN RULES

Actionable: Can I do something?→

Urgent: Does it need attention now?→

Real: Is this actually happening?→

Human judgment: Does this need a person?→

Alert on Symptoms

Page for user pain, ticket for slow burns.

Bot Army Engineering | USE Method Performance Sources: Brendan Gregg, Systems Performance, BPF Tools Observability

USE Method Performance
Utilization, Saturation, and Errors

Observability | Technical Operations Excellence

3
CORE METRICS

7
RESOURCE TYPES

<80%
UTILIZATION TARGET

0
IDEAL SATURATION

USE METHOD DEFINED

METRIC DEFINITION TARGET

Utilization % time resource is busy <80%

Saturation Queued work beyond capacity 0

Errors Error count/rate 0

Created by Brendan Gregg for systematic resource analysis

RESOURCE TYPES

RESOURCE U METRIC S METRIC

CPU % busy Run queue length

Memory % used OOM events, swap

Disk I/O % busy Queue depth

Network % bandwidth Drop/retransmit

Storage % capacity Out of space

Threads Pool usage Blocked threads

File Handles Open FDs FD exhaustion

USE VS RED VS GOLDEN SIGNALS

METHOD FOCUS BEST FOR

USE Resources Infrastructure, VMs

RED Requests Services, APIs

Golden Signals User experience Customer-facing

KEY INSIGHT

For every resource, check utilization, saturation, and errors. Start here
for performance issues.

- Brendan Gregg

"

COMMON PROMETHEUS QUERIES

METRIC QUERY PATTERN

CPU Util rate(cpu_seconds[5m])

Mem Util used / total * 100

Disk Util rate(io_time[5m])

Net Util rate(bytes[5m]) / bw

PROFILING & FLAME GRAPHS

Tools: perf, bcc, bpftrace, async-profiler, pprof

CPU flame graph: Where time is spent→

Off-CPU flame: What code is waiting→

Memory flame: Allocation patterns→

Differential flame: Before/after comparison→

PERFORMANCE ANTI-PATTERNS

ISSUE SYMPTOM

Resource leak Gradual degradation

Lock contention High CPU, low throughput

Thundering herd Bursty overload

N+1 queries Linear database calls

SATURATION INDICATORS

Run queue > cores: CPU saturation→

Swap active: Memory saturation→

Disk queue > 1: I/O saturation→

TCP retransmits: Network saturation→

Measure First

Never guess; always profile before optimizing.

Bot Army Engineering | Observability 2.0 Sources: Charity Majors, Honeycomb, OpenTelemetry Observability

Observability 2.0
Wide Events, High Cardinality, and Beyond the Three Pillars

Observability | Technical Operations Excellence

100s
FIELDS PER EVENT

106

HIGH CARDINALITY

1
UNIFIED FORMAT

<10s
QUERY RESPONSE

OBSERVABILITY 1.0 VS 2.0

ASPECT 1.0 2.0

Data 3 pillars (siloed) Wide structured events

Cardinality Low (pre-aggregated) High (millions)

Questions Known unknowns Unknown unknowns

Debug Correlate across tools Single pane of glass

WIDE STRUCTURED EVENTS

Emit one wide event per unit of work, with all relevant context
attached.

- Charity Majors

"

Request context: user_id, tenant_id, request_id→

Timing: duration, queue_time, db_time→

Result: status, error_type, cache_hit→

Environment: version, host, region, pod→

HIGH CARDINALITY FIELDS

FIELD CARDINALITY

user_id Millions

trace_id Billions

request_id Billions

build_id Thousands

endpoint Hundreds

Traditional metrics explode with high cardinality

CHARITY MAJORS PRINCIPLES

Observability is about understanding new problems→

Debug from production, not staging→

Instrument at the code level, not infrastructure→

Exploratory investigation over dashboards→

CORE PRACTICES

Instrument Everything

Every service emits structured events on every request

Query Interactively

Ad-hoc questions, slice and dice by any field

SLO Integration

Events feed SLI calculations directly

EVENT SCHEMA EXAMPLE

FIELD EXAMPLE VALUE

service api-gateway

endpoint /v2/users/:id

duration_ms 47.3

status_code 200

user_id u_abc123

cache_hit true

db_queries 3

TOOLS FOR OBSERVABILITY 2.0

TOOL STRENGTH

Honeycomb Query-first, high cardinality

Grafana + Loki Open-source ecosystem

OpenTelemetry Vendor-neutral instrumentation

KEY QUESTION

Can you debug problems you've never seen before, without adding
new instrumentation?
"

Ask New Questions

True observability answers questions you haven't thought to ask yet.

Bot Army Engineering | Alert Tuning Playbook Sources: Google SRE, Alerting Best Practices, DORA Observability

Alert Tuning Playbook
Reducing Noise, Improving Signal

Observability | Technical Operations Excellence

<2
PAGES PER SHIFT

<5%
FALSE POSITIVE RATE

80%
ACTIONABLE TARGET

30s
MTTD GOAL

ALERT QUALITY FRAMEWORK

QUALITY CRITERIA

Actionable Requires immediate human action

Symptom-based Alerts on user impact, not causes

Timely Detects issues within SLO window

Prioritized Clear severity levels

Documented Linked to runbooks

SYMPTOM VS CAUSE ALERTS

TYPE EXAMPLE PAGE?

Symptom Error rate >1% Yes

Symptom Latency p99 >500ms Yes

Cause CPU >80% Notify only

Cause Disk >90% Ticket

Page on symptoms; ticket causes for investigation

BURN RATE ALERTING

WINDOW BURN RATE ACTION

1 hour 14.4x Page immediately

6 hours 6x Page

24 hours 3x Ticket

72 hours 1x Review weekly

Burn rate = (1 - SLI) / (1 - SLO target)

ALERT FATIGUE INDICATORS

>2 pages per on-call shift→

>5% false positive rate→

Same alert firing repeatedly→

Engineers ignoring alerts→

No runbook links→

NOISE REDUCTION STRATEGIES

Aggregate Related

Group alerts by service or component

Adjust Thresholds

Based on historical data and SLOs

Add Hysteresis

Require sustained violations to fire

SEVERITY LEVELS

SEVERITY RESPONSE EXAMPLE

P1 Page, escalate Service down

P2 Page, working hours Degraded service

P3 Ticket, next day Non-critical issue

P4 Ticket, backlog Improvement

ALERT REVIEW CADENCE

ACTIVITY FREQUENCY

Alert review Weekly

Threshold tuning Monthly

Alert inventory Quarterly

Delete unused Quarterly

GOLDEN RULE

Every alert should either require immediate action or be deleted."

Signal Over Noise

The best alert is one that never fires unnecessarily.

Bot Army Engineering | Resilience Patterns Sources: Release It!, Google SRE, Resilience4j Resilience Patterns

Resilience Patterns
Circuit Breakers, Bulkheads & Graceful Degradation

Resilience Patterns | Technical Operations Excellence

N+2
REDUNDANCY

3
CIRCUIT STATES

<1s
TIMEOUT TARGET

5
DEFENSE LAYERS

CIRCUIT BREAKER PATTERN

Prevents cascading failures by stopping requests to failing

services.

Closed

Normal operation, requests pass through

Open

Requests blocked, return fallback immediately

Half-Open

Limited test requests to check recovery

BULKHEAD PATTERN

TYPE MECHANISM USE CASE

Thread Pool Dedicated pool Isolate slow deps

Semaphore Concurrency limit Lightweight isolation

Like watertight compartments in ships - isolate failures to prevent
sinking.
"

GRACEFUL DEGRADATION

Reduce work or quality to maintain availability during failures.

STRATEGY EXAMPLE

Quality Reduction Lower image resolution

Feature Shedding Disable recommendations

Subset Query Search cache only

Default Response Return static content

RETRY WITH BACKOFF

delay = min(maxBackoff, base * 2^attempt + jitter)

Do: Add jitter, cap max delay, limit attempts→

Don't: Retry non-idempotent ops, nest retries→

LOAD BALANCING: L4 VS L7

ASPECT L4 (TRANSPORT) L7 (APPLICATION)

Routing IP + Port HTTP headers, URLs

Latency 10-100 µs 0.5-3 ms

CPU Low High (TLS)

Best For DDoS, non-HTTP Smart routing

Production: Layer both (L4 edge → L7 internal)

TIMEOUT STRATEGY

TYPE TYPICAL VALUE

Connect 250ms - 1s

Header 5 - 30s

Idle 30 - 300s

Critical: Timeouts DECREASE deeper in call chain

DEFENSE IN DEPTH

Multiple independent layers - no single layer is exclusively

relied upon.

1. Prevention of abnormal operation→

2. Control of abnormal operation→

3. Control within design basis→

4. Control of severe conditions→

5. Mitigation of consequences→

CASCADING PREVENTION

PATTERN PURPOSE

Timeouts Bound waiting time

Bulkheads Isolate resources

Load Shedding Reject before instability

Deadlines Propagate time limits

Fail Fast, Recover Faster

Every pattern protects downstream dependencies.

Bot Army Engineering | Defense in Depth Sources: NIST, Google SRE, Nuclear Engineering Principles Resilience & Infrastructure

Defense in Depth
5-Layer Model, Compartmentalization & Blast Radius Control

Resilience & Infrastructure | Technical Operations Excellence

5
DEFENSE LAYERS

3
COMPARTMENTS

N+2
REDUNDANCY

0
SINGLE POINTS

5-LAYER DEFENSE MODEL

LAYER FUNCTION EXAMPLE

1. Perimeter Edge protection WAF, firewall

2. Network Segmentation VLANs, VPCs

3. Host Hardening Patches, config

4. Application Code security Input validation

5. Data Encryption At rest, in transit

Multiple layers must fail for a breach to succeed

COMPARTMENTALIZATION STRATEGIES

STRATEGY DESCRIPTION

Role Separation Different jobs run as distinct accounts

Location Separation Geographic isolation (multi-region)

Time Separation Key rotation forces continuous presence

BLAST RADIUS CONTROL

Failure Domains

Partition into independent copies

Circuit Breakers

Stop cascading failures at boundaries

Bulkheads

Isolate resource pools per tenant/service

ACCESS CLASSIFICATION

TIER DATA TYPE CONTROLS

Public Company-wide Low-risk

Sensitive Authorized only Medium-high

Highly Sensitive No permanent access MPA required

REDUNDANCY PATTERNS

PATTERN DESCRIPTION

N+1 One spare for failover

N+2 Two spares (for critical systems)

Active-Active All replicas serve traffic

Active-Passive Standby on failover

N+2 for tier-0 critical systems

ADVANCED AUTHORIZATION

MPA: Multi-party approval for sensitive ops→

Temporary Access: Time-bound permissions→

Business Justification: Tie to tickets/incidents→

Breakglass: Emergency override with audit→

DESIGNING FOR RECOVERY

PRINCIPLE APPLICATION

Go fast, guarded Speed with policy guardrails

Minimize time deps Don't wait for wall-clock

Know intended state Encode complete config

Emergency access Works when systems fail

ZERO SINGLE POINTS OF FAILURE

Every component has a backup→

Every process has redundancy→

Every region has failover→

Every credential has rotation→

Assume Breach

Design so attackers must breach ALL layers.

Bot Army Engineering | HRO Pattern Recognition Sources: Weick & Sutcliffe, James Reason, NASA, NTSB Resilience Patterns

HRO Pattern Recognition
Learning from High-Reliability Organizations

Resilience Patterns | Technical Operations Excellence

5
HRO PRINCIPLES

10
ROOT CAUSE CATEGORIES

4
SWISS CHEESE LAYERS

10-6

AVIATION ERROR RATE

5 HRO PRINCIPLES DEEP DIVE

PRINCIPLE APPLICATION

Preoccupation with

Failure

Treat near-misses as failures; never assume

safety

Reluctance to Simplify
Resist simple explanations; embrace

complexity

Sensitivity to Operations Maintain situational awareness at all times

Commitment to

Resilience
Focus on recovery, not just prevention

Deference to Expertise Authority migrates to knowledge in crisis

BIG 10 ROOT CAUSES

CATEGORY EXAMPLE

1 Config Change Bad deploy, wrong flag

2 Capacity Resource exhaustion

3 Dependency Upstream/downstream fail

4 Hardware Disk, network, memory

5 Security Attack, credential leak

6 Human Error Typo, wrong command

7 Software Bug Race condition, logic error

8 Data Corruption, schema drift

9 Network Partition, DNS, latency

10 External Cloud provider, 3rd party

SWISS CHEESE MODEL

Accidents occur when holes in multiple defense layers momentarily
align.

- James Reason

"

Layer 1: Organizational controls→

Layer 2: Technical safeguards→

Layer 3: Monitoring & detection→

Layer 4: Human operators→

PATTERN RECOGNITION TABLE

SIGNAL PATTERN ACTION

Latency spike Capacity/Dependency Scale or isolate

Error burst Deploy/Config Rollback

Gradual degrade Resource leak Restart/investigate

Cascading fail Missing circuit breaker Shed load

Partial outage Network partition Failover

HRO VS TRADITIONAL ORGS

ASPECT TRADITIONAL HRO

Failures Hide/blame Learn/share

Complexity Simplify away Embrace

Authority Hierarchy Expertise

Focus Efficiency Reliability

INDUSTRIES WE LEARN FROM

INDUSTRY KEY PRACTICE

Aviation Checklists, crew resource mgmt

Nuclear Defense in depth, safety culture

Healthcare Root cause analysis, just culture

Military After-action reviews, command

FAILURE TAXONOMY

Active failures: Immediate triggers (human error)→

Latent conditions: Dormant system weaknesses→

Error-provoking: Conditions that invite mistakes→

Failures Are Teachers

Every incident is a window into system weaknesses.

Bot Army Engineering | Release It! Patterns Sources: Release It! 2nd Ed (Michael Nygard) Resilience Patterns

Release It! Patterns
Stability Patterns for Production Systems

Resilience Patterns | Technical Operations Excellence

15
STABILITY PATTERNS

12
ANTI-PATTERNS

2007
FIRST EDITION

5s
TIMEOUT DEFAULT

KEY STABILITY PATTERNS

PATTERN PURPOSE

Circuit Breaker Stop cascading failures

Bulkhead Isolate failures to partitions

Timeout Prevent indefinite waits

Retry Handle transient failures

Fallback Graceful degradation

Shed Load Reject excess traffic

Handshaking Verify capacity before work

CIRCUIT BREAKER STATES

STATE BEHAVIOR

Closed Normal operation, count failures

Open Fast fail, don't call downstream

Half-Open Test with limited traffic

Thresholds: 5 failures, 30s timeout, 1 test request

BULKHEAD STRATEGIES

Thread pool isolation: Separate pools per dependency→

Semaphore isolation: Limit concurrent requests→

Process isolation: Separate containers/pods→

Network isolation: Separate subnets→

MORE STABILITY PATTERNS

PATTERN USE CASE

Steady State Self-cleaning logs/data

Test Harness Simulate bad behaviors

Decoupling Async via queues

Fail Fast Check prereqs early

STABILITY ANTI-PATTERNS

ANTI-PATTERN RISK

Integration Points Every call is a risk

Chain Reactions One failure cascades

Cascading Failures Avalanche effect

Users Unpredictable traffic

Blocked Threads Thread pool exhaustion

Unbounded Queues Memory exhaustion

MORE ANTI-PATTERNS

ANTI-PATTERN RISK

Self-Denial Marketing DDos

Unbalanced Capacity Bottleneck fails first

Slow Responses Worse than no response

SLA Inversion Depend on weaker SLA

TIMEOUT GUIDELINES

TYPE RECOMMENDATION

Connect 1-3 seconds

Read 5-30 seconds

Total Max acceptable latency

Always set timeouts! Never use language defaults.

KEY QUOTE

Every integration point will eventually fail in some way.

- Michael Nygard, Release It!

"

Expect Failure

Design for failure; plan for success.

Bot Army Engineering | Chaos Engineering Sources: Netflix, Chaos Engineering (Rosenthal), CNCF Resilience Patterns

Chaos Engineering
Principles, Experiments & GameDay Practices

Resilience Patterns | Technical Operations Excellence

5
MATURITY LEVELS

4
EXPERIMENT PHASES

2011
CHAOS MONKEY BORN

0
INCIDENTS DURING

CHAOS ENGINEERING PRINCIPLES

PRINCIPLE DESCRIPTION

Hypothesis Define steady state & expected behavior

Vary Real-World Simulate production conditions

Run in Prod Staging doesn't catch all issues

Automate Continuous experimentation

Minimize Blast Start small, abort on harm

EXPERIMENT DESIGN

PHASE ACTIONS

1. Hypothesis Define steady state metrics

2. Design Choose failure injection type

3. Execute Run with monitoring active

4. Analyze Compare results to hypothesis

MATURITY MODEL

LEVEL CAPABILITY

1. Ad-hoc Manual, sporadic testing

2. Basic Simple failure injection

3. Repeatable Documented experiments

4. Automated CI/CD integrated chaos

5. Optimized Continuous chaos in prod

10 CORE EXPERIMENTS

EXPERIMENT TESTS

Instance Kill Auto-recovery, failover

Zone Failure Multi-AZ resilience

Network Latency Timeout handling

Packet Loss Retry logic

Dependency Down Circuit breakers

Also: CPU stress, memory pressure, disk fill, DNS failure, clock skew

SAFETY REQUIREMENTS

Abort Conditions

Define clear stop criteria before starting

Blast Radius

Limit scope; start with 1% of traffic

Rollback Plan

Instant recovery must be ready

GAMEDAY FORMAT

TIME ACTIVITY

0:00 Brief team, review hypothesis

0:15 Start observability baseline

0:30 Inject failure

1:00 Observe, document behaviors

1:30 Stop injection, verify recovery

2:00 Debrief, document findings

GAMEDAY ROLES

ROLE RESPONSIBILITY

Facilitator Run experiment, track time

Observer Monitor dashboards

Scribe Document findings

Safety Officer Call abort if needed

SAFETY CHECKLIST

☐ Abort conditions defined→

☐ Rollback plan documented→

☐ Blast radius limited (<10% traffic)→

☐ Monitoring dashboards open→

☐ Stakeholders notified→

Fail Safely

Better to find weaknesses before your customers do.

Bot Army Engineering | Incident Excellence Sources: Google SRE, ITIL, Sidney Dekker Incident Management

Incident Excellence
ITIL Lifecycle, Blameless Postmortems & On-Call Sustainability

Incident Management | Technical Operations Excellence

5
ITIL PHASES

≤2
PAGES/SHIFT

3Cs
IMAG FRAMEWORK

48h
POSTMORTEM SLA

ITIL INCIDENT LIFECYCLE

1. Identify

Detection via monitoring, alerts, or reports

2. Categorize

Classify by type, service, impact area

3. Prioritize

Assign SEV level based on impact + urgency

4. Respond

Diagnose, mitigate, resolve, communicate

5. Close

Verify, document, postmortem, action items

SEVERITY LEVELS

LEVEL IMPACT RESPONSE

SEV1 Critical outage <15 min

SEV2 Major degradation <30 min

SEV3 Minor impact <4 hours

SEV4 Low/cosmetic Next business day

IMAG FRAMEWORK (3CS)

PRINCIPLE ACTIONS

Coordinate IC assigns roles, manages workstreams

Communicate Status updates, stakeholder briefs

Control Authorize changes, manage scope

Crisis triage: data criticality, trust relationships, compensating controls

CRISIS TRIAGE QUESTIONS

Data criticality: What can be accessed from compromised systems?→

Trust relationships: What other systems trust the affected one?→

Compensating controls: Are there mitigations in place?→

Blast radius: How many users/services affected?→

INCIDENT ROLES

ROLE RESPONSIBILITY

Incident Commander Owns resolution, delegates

Ops Lead Technical investigation

Comms Lead Stakeholder updates

Scribe Documents timeline

SEV1/2: Add Remediation Lead, Legal (if needed)

BLAMELESS POSTMORTEMS

Ask "what" and "how" questions, never "why" - it forces justification
and blame.

- John Allspaw, Etsy

"

Timeline: What happened, when?→

Contributing factors: What conditions existed?→

Action items: Preventative, detective, mitigating→

COMMUNICATION CADENCE

SEVERITY UPDATE FREQUENCY

SEV1 Every 15 minutes

SEV2 Every 30 minutes

SEV3/4 Hourly or as needed

Playbooks improve MTTR by 3x on average

TRAINING: WHEEL OF MISFORTUNE

Role-play exercise for IC practice. Spin wheel to select historic

incident, responders handle in real-time simulation.
Do: Practice handoffs, escalation→

Don't: Use for evaluation/blame→

Learn from Every Incident

Blameless culture enables honest retrospectives.

Bot Army Engineering | Learning from Catastrophe Sources: 50+ Historic Incidents, Swiss Cheese Model, HRO Research Historic Incidents

Learning from Catastrophe
Swiss Cheese Model, Big 10 Root Causes & Pattern Recognition

Historic Incidents | Technical Operations Excellence

50+
INCIDENTS ANALYZED

40%
CONFIG/DEPLOY ERRORS

$10B+
CROWDSTRIKE DAMAGE

4
DEFENSE LAYERS

BIG 10 ROOT CAUSES

ROOT CAUSE FREQ

1 Config/Deploy Errors ~40%

2 Ignored Warnings High

3 Single Point of Failure High

4 Inadequate Testing High

5 Simple Bugs at Scale High

6 Monitoring Gaps Med

7 Complex Interdependencies Med

8 Human Error Under Pressure Med

9 Vendor/3rd Party Failures Med

10 Legacy System Fragility Med

SWISS CHEESE MODEL

Hazard → [Prevention] → [Detection] → [Containment] →

[Recovery] → Accident

LAYER IF HOLE

Prevention Near miss

Detection Degradation

Containment Incident

Recovery Catastrophe

Key: Catastrophic failures require ALL layers to fail simultaneously

CROWDSTRIKE CASE STUDY (2024)

Lesson: Staged rollouts essential for security updates

Impact: $10B+ damages, 8.5M Windows systems→

Root Cause: Content update bypassed validation→

Kernel driver: Single point of failure→

NOTABLE INCIDENTS

INCIDENT ROOT CAUSE LESSON

GitLab Config error Staged rollouts

737 MAX Single PoF Redundancy

Knight Capital Bug at scale Code review

Therac-25 Bad testing Integration tests

MITIGATIONS BY ROOT CAUSE

CAUSE MITIGATION

Config errors Canaries, staged rollouts

Ignored warnings Safety culture, incentives

Single PoF Redundancy, chaos testing

Testing gaps Comprehensive coverage

Dependencies Dependency mapping

CROSS-INDUSTRY LESSONS

Aviation: Crew resource management→

Nuclear: Defense in depth→

Healthcare: Checklists, near-miss reporting→

Finance: Circuit breakers, kill switches→

PATTERN RECOGNITION

Every catastrophe is a near-miss that was ignored."

Defense in Depth

Build redundant, independent defenses at every layer.

Bot Army Engineering | Runbook Quick Reference Sources: Google SRE, PagerDuty, Incident Response Incident Management

Runbook Quick Reference
Templates, Decision Trees, and MTTR Targets

Incident Management | Technical Operations Excellence

10
RUNBOOK TEMPLATES

<5min
TRIAGE TARGET

<1hr
MTTR TARGET

80%
RUNBOOK COVERAGE

10 ESSENTIAL RUNBOOK TYPES

RUNBOOK MTTR TARGET

1 Service Restart 5 min

2 Deployment Rollback 10 min

3 Database Failover 15 min

4 Cache Clear 5 min

5 Traffic Shift 10 min

6 Scale Out 5 min

7 Certificate Rotation 15 min

8 DNS Update 10 min

9 Feature Flag Toggle 2 min

10 Emergency Access 5 min

RUNBOOK STRUCTURE

SECTION CONTENT

Overview What this runbook addresses

Symptoms How to recognize the issue

Prerequisites Required access & tools

Steps Numbered procedure

Verification How to confirm success

Rollback If things go wrong

Escalation Who to contact next

DECISION TREE: HIGH LATENCY

Check: Is it a single service or all?→

Single → Check that service's resources→

All → Check shared dependencies (DB, cache)→

Check: Recent deployment?→
Yes → Consider rollback→

No → Check traffic levels→

Check: Resource exhaustion?→

Yes → Scale or restart→

No → Check network, dependencies→

VERIFICATION CHECKLIST

CHECK HOW

Service healthy Health endpoint returns 200

Metrics normal Grafana dashboards green

Errors stopped Error rate below threshold

Latency normal p99 within SLO

Logs clean No error spikes in logs

DECISION TREE: ERRORS SPIKE

Check: Error type?→

5xx → Server-side issue→

4xx → Client or config issue→

Check: Pattern?→
Sudden spike → Deployment or config→

Gradual → Resource exhaustion→

Check: Scope?→

One endpoint → Check that handler→

All endpoints → Check infrastructure→

RUNBOOK QUALITY CRITERIA

Testable

Can be verified in staging/DR drills

Automatable

Steps are scriptable for future automation

Measurable

Includes timing targets and success criteria

QUICK COMMANDS

ACTION EXAMPLE

Pod restart kubectl rollout restart

Rollback kubectl rollout undo

Scale kubectl scale --replicas

Document to Automate

Today's runbook is tomorrow's automation.

Bot Army Engineering | Capacity & Release Sources: DORA Research, Google SRE, Accelerate Capacity & Release

Capacity & Release Engineering
DORA Metrics, Progressive Delivery & Safe Changes

Capacity & Release | Technical Operations Excellence

4
DEPLOY STRATEGIES

<5%
ELITE CFR

1-5%
CANARY SIZE

<1h
ELITE LEAD TIME

RELEASE PERFORMANCE TARGETS

METRIC ELITE TARGET

Deploy Frequency On-demand (multiple/day)

Lead Time <1 hour commit to prod

Change Fail Rate <5% of deploys cause issues

Time to Restore <1 hour to recover

Based on DORA research: elite performers achieve 182x higher deploy

frequency

DEPLOYMENT STRATEGIES

Canary

Route 1-5% traffic to new version, monitor, expand gradually

Blue-Green

Two identical envs, instant switchover, easy rollback

Feature Flags

Decouple deploy from release, targeted rollouts

CANARY BEST PRACTICES

40%+ of incidents stem from config/deployment errors

One at a time: Avoid signal contamination→

5-12 metrics: Monitor error rate, latency, saturation→

Absolute thresholds: Define rollback criteria upfront→

Bake time: Allow sufficient observation window→

PROGRESSIVE DELIVERY

Commit → CI/CD → Canary (1-5%) → Rollout → Full Deploy

STAGE GATE

Build Tests pass, security scan

Canary Error budget not exceeded

Rollout Metrics within thresholds

NALSD FRAMEWORK

Non-Abstract Large System Design - 4 essential questions:

QUESTION FOCUS

Is it possible? Can we build it at all?

Can we do better? Optimize design choices

Is it feasible? Cost, time, resources

Is it resilient? Graceful degradation

CAPACITY PLANNING

COMPONENT APPROACH

Demand Forecast Historical trends + growth models

Headroom N+1 minimum, N+2 for critical

Load Testing Regular stress tests at 2x expected

Auto-scaling HPA/VPA with proper limits

CHANGE RISK CATEGORIES

TIER EXAMPLES PROCESS

Low Config, docs Auto-deploy

Medium App code Canary + review

High Infra, DB schema Change board

LAUNCH CHECKLIST

✓ SLOs defined and dashboards ready→

✓ Runbooks documented→

✓ Rollback procedure tested→

✓ On-call coverage confirmed→

✓ Load test completed→

Ship Fast, Ship Safe

Elite teams deploy frequently with low failure rates.

Bot Army Engineering | NALSD Framework Sources: Google SRE, Capacity Planning Best Practices Capacity & Release

NALSD Framework
Non-Abstract Large System Design

Capacity & Release | Technical Operations Excellence

4
ESSENTIAL QUESTIONS

N+2
HEADROOM TARGET

2x
LOAD TEST TARGET

30d
FORECAST WINDOW

THE 4 ESSENTIAL QUESTIONS

1. Is it possible?

Can we build it at all?

2. Can we do better?

Optimize design choices

3. Is it feasible?

Cost, time, resources

4. Is it resilient?

Graceful degradation

CAPACITY PLANNING PROCESS

STEP ACTIVITY

1. Demand Forecast Historical trends + growth models

2. Supply Analysis Current capacity, bottlenecks

3. Gap Assessment Where will we run out?

4. Headroom Planning N+1 min, N+2 for critical

LOAD TESTING STRATEGY

TEST TYPE PURPOSE TARGET

Baseline Normal load Current traffic

Stress Find limits 2x expected

Spike Sudden surge 10x for 30s

Soak Leaks, drift 24-48 hours

DESIGN TRADE-OFFS

DIMENSION TRADE-OFF

Consistency vs. Availability (CAP)

Latency vs. Throughput

Cost vs. Resilience

Complexity vs. Maintainability

CAPACITY METRICS

METRIC TARGET

CPU Utilization <70% avg, <90% peak

Memory <80% avg, <95% peak

Disk I/O <70% queue depth

Network <60% bandwidth

Leave headroom for traffic spikes and incidents

SCALING STRATEGIES

TYPE WHEN TO USE

Vertical Simple, single-instance

Horizontal Stateless, distributed

Auto-scaling Variable traffic patterns

Predictive Known events (launches)

FORECASTING INPUTS

Historical trends: Past 90+ days growth→

Seasonality: Day/week/month patterns→

Business events: Launches, campaigns→

External factors: Market trends→

WARNING SIGNS

Utilization >80% sustained→

P99 latency creeping up→

Queue depths growing→

Error rates increasing→

Plan for 2x

Capacity planning is cheaper than outages.

Bot Army Engineering | Designing for Recovery Sources: Google SRE, NIST DR Guidelines, Building Secure Systems Infrastructure Reliability

Designing for Recovery
Recovery Principles, Breakglass & Emergency Access

Infrastructure Reliability | Technical Operations Excellence

3-2-1
BACKUP RULE

<15m
TIER-0 RTO

0
TIER-0 RPO

MPA
MULTI-PARTY AUTH

RECOVERY DESIGN PRINCIPLES

PRINCIPLE APPLICATION

Go fast, guarded Speed with policy guardrails

Minimize time deps Don't wait for wall-clock

Know intended state Encode complete configuration

Test restores Untested backups = no backups

3-2-1 BACKUP STRATEGY

3 Copies

Original + 2 backups minimum

2 Media Types

Different storage technologies

1 Offsite

Geographic separation

RTO & RPO TARGETS

TIER SYSTEMS RTO RPO

0 Critical APIs <15m 0

1 Core services <4h <1h

2 Internal tools <24h <4h

3 Dev/test <72h <24h

RECOVERY TESTING

Quarterly: Full restore drill for Tier-0→

Monthly: Point-in-time recovery test→

Weekly: Backup integrity verification→

Daily: Automated backup monitoring→

BREAKGLASS PROCEDURES

MECHANISM PURPOSE

Breakglass Override normal access controls

MPA Multi-party authorization

Offline creds Independent of primary systems

Temp access Time-bounded elevation

Document business justification for all elevated access

EMERGENCY ACCESS MUST-HAVES

Work when systems fail: Independent channel→

Pre-staged credentials: Not just-in-time during crisis→

Tested regularly: Part of disaster drills→

Audit trail: All access logged→

DISASTER VALIDATION

EXERCISE FREQUENCY

Tabletop Monthly

Failover drill Quarterly

Full DR test Annually

Chaos experiments Continuous

RECOVERY CHECKLIST

✓ Runbooks documented and tested→

✓ Contact list current→

✓ Backup restore verified→

✓ Failover procedure practiced→

Plan to Fail

The best recovery is the one you've practiced.

Bot Army Engineering | Infrastructure Reliability Sources: Google SRE, Kubernetes Docs, HashiCorp Infrastructure

Infrastructure Reliability
Kubernetes, Databases, TSDB & Observability Backends

Infrastructure | Technical Operations Excellence

3
K8S PROBES

N+2
REDUNDANCY

IaC
GITOPS PATTERN

mTLS
SERVICE MESH

KUBERNETES RELIABILITY

COMPONENT PURPOSE KEY CONFIG

HPA Scale pods out CPU/memory targets

VPA Right-size pods updateMode: Off

PDB Protect availability minAvailable: 2

HPA + VPA conflict on same metrics - use VPA in recommend-only

mode

KUBERNETES PROBES

PROBE PURPOSE WHEN

Startup Container started First (slow apps)

Liveness Container running Catch deadlocks

Readiness Ready for traffic Load balancer

Liveness: lightweight checks. Let fatal errors crash, don't restart.

DATABASE RELIABILITY

PATTERN USE CASE

Read replicas Scale read traffic

Multi-AZ HA failover

Sharding Horizontal scale

Connection pooling Limit connections

Replication ≠ Backup - corrupt data replicates everywhere

RESOURCE MANAGEMENT

RESOURCE LIMIT STRATEGY

CPU Requests = P50, Limits = P99

Memory Request = Limit (no OOM)

Ephemeral Limit to prevent node evict

Profile in production to set accurate requests

SECRETS MANAGEMENT

HashiCorp Vault core capabilities:

FEATURE BENEFIT

Dynamic secrets Short-lived, on-demand

Encryption as a service Transit secrets engine

Identity-based access RBAC, namespaces

Audit logging SIEM integration

SERVICE MESH

FEATURE BENEFIT

mTLS Encrypted service-to-service

Traffic mgmt Canary, A/B, retries

Observability Distributed tracing

Circuit breaking Prevent cascade failures

Start simple; add mesh when complexity justifies overhead

OBSERVABILITY BACKENDS

SIGNAL OSS STACK KEY FEATURE

Metrics Prometheus, Mimir PromQL, federation

Logs Loki, OpenSearch LogQL, labels

Traces Tempo, Jaeger Trace correlation

Grafana unifies all three signals in one UI

TIME SERIES DATABASES

TSDB BEST FOR

InfluxDB IoT, high cardinality

Prometheus K8s metrics, alerts

kdb+ Finance, ultra-low latency

VictoriaMetrics Long-term retention

Cattle, Not Pets

Infrastructure should be reproducible and replaceable.

Bot Army Engineering | Kubernetes Patterns Sources: K8s Patterns (Ibryam & Huss), CNCF Infrastructure

Kubernetes Patterns
Foundational, Behavioral, and Structural Patterns

Infrastructure | Technical Operations Excellence

4
PATTERN CATEGORIES

25+
DESIGN PATTERNS

2014
K8S RELEASED

92%
ENTERPRISE ADOPTION

FOUNDATIONAL PATTERNS

PATTERN PURPOSE

Health Probe Liveness, readiness, startup checks

Predictable Demands Resource requests/limits

Automated Placement Node selectors, affinity rules

Declarative Deployment Desired state via manifests

BEHAVIORAL PATTERNS

PATTERN USE CASE

Batch Job Run-to-completion workloads

Periodic Job CronJobs for scheduled tasks

Daemon Service Per-node agents (logging, monitoring)

Singleton Service Leader election, exactly one instance

Stateful Service Ordered, sticky identity (StatefulSet)

STRUCTURAL PATTERNS

PATTERN DESCRIPTION

Init Container Setup tasks before main container

Sidecar Extend without modifying main app

Ambassador Proxy for external communication

Adapter Normalize heterogeneous output

CONFIGURATION PATTERNS

PATTERN USE FOR

EnvVar Config Simple key-value settings

ConfigMap Non-sensitive config files

Secret Sensitive data (encrypted)

Immutable Config Version-pinned configurations

OPERATOR PATTERN

Operators encode operational knowledge as software, automating
day-2 operations.
"

Custom Resource: Domain-specific API→

Controller: Reconciliation logic→

Levels: Basic install → Full lifecycle→

RESILIENCE PATTERNS

PATTERN K8S IMPLEMENTATION

Self-Healing Restart policy, pod disruption budget

Scaling HPA, VPA, cluster autoscaler

Rolling Updates Deployment strategy

Blue-Green Service selector switch

Canary Weighted traffic split

SECURITY PATTERNS

PATTERN IMPLEMENTATION

Least Privilege RBAC, SecurityContext

Network Isolation NetworkPolicy

Secret Management External Secrets Operator

Pod Security PSS/PSA, read-only root

OBSERVABILITY PATTERNS

Sidecar logging: Fluentbit, Fluent-bit→

Service mesh: Istio, Linkerd for tracing→

Metrics: Prometheus ServiceMonitor→

Events: K8s event exporter→

Declarative Operations

Define desired state; let Kubernetes reconcile.

Bot Army Engineering | Platform Engineering Sources: Team Topologies, CNCF Platforms, Spotify Infrastructure

Platform Engineering
Internal Developer Platforms, Golden Paths & Self-Service

Infrastructure | Technical Operations Excellence

80%
GOLDEN PATH USE

<10m
ENV PROVISION

0
TICKETS TO DEPLOY

IDP
INTERNAL PLATFORM

PLATFORM ENGINEERING GOALS

GOAL OUTCOME

Reduce cognitive load Devs focus on features

Standardize tooling Consistency at scale

Self-service No ticket queues

Paved roads Easy path for 80% cases

INTERNAL DEVELOPER PLATFORM

Developer Portal

Backstage, Port, Cortex - service catalog & docs

CI/CD Pipeline

Standardized builds, tests, deployments

Infrastructure Abstraction

Crossplane, Terraform modules, GitOps

GOLDEN PATHS

Pre-built, tested, supported paths for common tasks:

Optional, not mandatory. Compelling, not mandated.

New service: Template → CI/CD → observability→

Database: Request → provision → connect→

Secrets: Vault integration → auto-rotation→

Deployment: Git push → canary → production→

PLATFORM TEAM MODEL

ASPECT APPROACH

Mindset Treat devs as customers

Feedback Regular user research

Roadmap Based on dev pain points

Success Adoption rate, not features

SELF-SERVICE CAPABILITIES

CAPABILITY NO TICKET

Environment ✓ API/CLI provision

Database ✓ Catalog request

Secrets ✓ Vault self-serve

Monitoring ✓ Auto-instrumented

Domains/TLS ✓ Cert-manager

PLATFORM MATURITY

LEVEL CHARACTERISTICS

1. Provisional Tribal knowledge, manual

2. Managed Documented, some automation

3. Defined Self-service, golden paths

4. Optimized Metrics-driven, evolving

PLATFORM SUCCESS METRICS

Time to first deploy: New dev productivity→

Golden path adoption: >80% target→

Ticket reduction: Fewer ops requests→

Developer NPS: Platform satisfaction→

ANTI-PATTERNS TO AVOID

Mandated use: Force kills adoption→

No feedback loop: Building in isolation→

Feature bloat: Too much, too complex→

Shadow IT: Teams route around you→

Paved Roads, Not Walled Gardens

Make the right way the easy way.

Bot Army Engineering | AI/ML Operations Sources: Langfuse, Arize AI, Datadog LLM Observability AI/ML Operations

AI/ML Operations
Model Serving, LLM Observability & Drift Detection

AI/ML Operations | Technical Operations Excellence

<1%
HALLUCINATION TARGET

>90%
TASK COMPLETION

>98%
TOOL ACCURACY

<5%
HUMAN ESCALATION

LLM OBSERVABILITY

Traditional observability measures infrastructure. LLM

observability measures:

DIMENSION QUESTION

Behavior Is the model doing what we expect?

Quality Are outputs accurate, helpful, safe?

Reasoning Is the chain-of-thought sound?

HALLUCINATION DETECTION

SelfCheckGPT

Sample multiple completions, check consistency. Inconsistent facts = hallucination.

LLM-as-Judge

Use another LLM to evaluate groundedness against retrieved context.

CLAP

Cross-Layer Attention Probing - classifier on model activations (open-source only).

CHAIN-OF-THOUGHT MONITORING

ASPECT QUESTION

Faithfulness Does CoT reflect actual reasoning?

Verbosity Is reasoning externalized?

Readability Can humans understand it?

Necessity Is CoT required for complexity?

CoT most relevant when task is difficult enough to externalize

reasoning

TRAINING PIPELINES

STAGE RELIABILITY PRACTICE

Data Ingest Schema validation, drift checks

Feature Store Versioning, consistency

Training Checkpointing, resource limits

Eval Automated benchmarks, holdouts

BOT PERFORMANCE METRICS

METRIC TARGET

Task Completion Rate >90%

Tool Call Accuracy >98%

Context Utilization >70%

Hallucination Rate <1%

Human Escalation <5%

DRIFT DETECTION

TYPE WHAT TO WATCH

Data Drift Input distribution shifts

Concept Drift Relationship changes

Model Drift Prediction quality decay

Monitor production predictions vs training distribution continuously

LLM OBSERVABILITY PLATFORMS

PLATFORM STRENGTH OSS?

Langfuse Tracing, evals Yes

Arize Phoenix RAG analysis Yes

LangSmith LangChain native No

MODEL SERVING

Canary deploys: A/B test model versions→

Shadow mode: Compare new vs old without impact→

Circuit breakers: Fallback to cached/simpler model→

GPU monitoring: Utilization, memory, thermals→

Observe the Reasoning

AI reliability requires new observability primitives.

Bot Army Engineering | Agentic Operations Sources: Gartner AIOps, DORA Report, O'Reilly Signals Agentic Operations

Agentic Operations
AI Agents, Self-Healing Systems & Human-Bot Collaboration

Agentic Operations | Technical Operations Excellence

70%
AUTO-RESOLUTION

60%
SELF-HEALING BY '26

16%
TRUE AGENTS TODAY

$32B
AIOPS MARKET '28

AIOPS EVOLUTION

LEVEL CAPABILITY ACTION

Reactive Respond to incidents Alert triage, runbooks

Proactive Prevent incidents Trend analysis, SLO watch

Predictive Anticipate issues Anomaly detection, ML

Autonomous Self-heal Auto-remediate, adapt

40% fewer outages + 45% faster MTTR with SRE + AIOps (Gartner)

SELF-HEALING SYSTEMS

By 2026, over 60% of large enterprises will have self-healing systems
powered by AIOps.

- Gartner

"

Restart containers automatically→

Cycle unhealthy nodes→

Shift traffic from degraded services→

Recreate failed pods→

AGENT MATURITY REALITY

DEPLOYMENT TRUE AGENTS

Enterprise 16%

Startups 27%

True agent = LLM that plans, executes, observes feedback,

and adapts

40% of agentic initiatives may fail by 2027 due to unclear ROI

PRODUCTIVITY IMPACT

ACTIVITY AI IMPROVEMENT

Documentation 45-50% faster

Code Generation 35-45% faster

Refactoring 20-30% faster

HUMAN-BOT COLLABORATION

M-Shaped Supervisors

Humans oversee multiple specialized bots, intervening strategically

Tiered Autonomy

Low-risk: full autonomy. High-risk: human approval required

MULTI-AGENT ORCHESTRATION

PATTERN DESCRIPTION

Puppeteer Manager bot coordinates specialists

Specialist Deep expertise in narrow domain

Reviewer Quality gate before actions

Escalation Bot-to-bot, then bot-to-human

AUTO-RESOLUTION TARGETS

PHASE TARGET SCOPE

Phase 3 70% Known issues

Phase 5 90% All incidents

Zero manual escalations for known issues

AI AS AMPLIFIER

"AI magnifies existing organizational strengths and

weaknesses. AI adoption improves throughput but also

increases delivery instability."

- DORA Report

Bots as Teammates

Autonomy within guardrails, escalation as exception.

Bot Army Engineering | People & Culture Sources: Westrum, Team Topologies, Phoenix Project, DORA People & Culture

People & Culture
Westrum Culture, Team Topologies & Sustainable Operations

People & Culture | Technical Operations Excellence

30%
GENERATIVE BOOST

4
TEAM TYPES

3
INTERACTION MODES

<2
PAGES/SHIFT TARGET

WESTRUM CULTURE TYPES

TYPE CHARACTERISTICS PERFORMANCE

Pathological Power-oriented, fear Low

Bureaucratic Rule-oriented, silos Medium

Generative Performance-oriented +30%

Generative cultures: high cooperation, messengers welcomed, failures

lead to inquiry

KEY FRAMEWORKS

FRAMEWORK CORE CONCEPT

Three Ways Flow, Feedback, Learning

Team Topologies 4 team types, 3 modes

Five Ideals Locality, Flow, Improvement

Conway's Law Teams mirror architecture

See dedicated pages for deep dives on each framework

SRE TEAM MODELS

MODEL BEST FOR

Centralized Shared expertise, standards

Embedded Deep product context

Hybrid Balance of both approaches

BLAMELESS CULTURE

Blameless postmortems focus on systems, not individuals. The goal is
learning, not punishment.

- Google SRE

"

Psychological safety: Speak up without fear→

Just culture: Distinguish error from recklessness→

Learning reviews: Focus on "how" not "who"→

ON-CALL SUSTAINABILITY

METRIC TARGET

Pages per shift <2

Interrupt ratio <25%

Rotation size 6-8 engineers

Max consecutive days 3-4 days

Burnout risk: >2 pages/night or >25% interrupt work

SRE CORE COMPETENCIES

TECHNICAL NON-TECHNICAL

Distributed systems Communication

Observability Incident command

Automation Documentation

Networking Collaboration

TEAM HEALTH SIGNALS

Healthy: Proactive improvements, low burnout→

Warning: Increasing toil, delayed projects→

Unhealthy: High turnover, reactive only→

Culture Eats Strategy

Generative culture is the foundation of elite performance.

Bot Army Engineering | On-Call Excellence Sources: Google SRE, PagerDuty State of On-Call, Honeycomb People & Culture

On-Call Excellence
Sustainable Rotations, Escalation Paths & Alert Quality

People & Culture | Technical Operations Excellence

<2
PAGES/SHIFT

6-8
ROTATION SIZE

<25%
INTERRUPT RATIO

24/7
COVERAGE

HEALTHY ON-CALL METRICS

METRIC TARGET WARNING

Pages/shift <2 >5

Interrupt ratio <25% >50%

Night pages 0 >1

False positives <10% >30%

High alert volume = burnout risk. Fix alerts, not engineers.

ROTATION DESIGN

PARAMETER RECOMMENDATION

Team size 6-8 engineers minimum

Shift length Max 3-4 consecutive days

Handoff Overlapping 30-min window

Shadow period 2 weeks for new members

ESCALATION TIERS

L1: Primary On-Call

First responder, initial triage, known fixes

L2: Secondary/SME

Domain expert, complex issues, escalation

L3: Management
SEV1 coordination, customer comms, exec updates

COMPENSATION & FAIRNESS

Comp time: Time off after heavy shifts→

Pay differential: Extra pay for on-call hours→

Equitable rotation: Fair holiday distribution→

Opt-out option: Accommodations for burnout→

ALERT QUALITY GATES

GATE REQUIREMENT

Actionable Clear remediation steps

Urgent Needs human intervention now

Documented Runbook link in alert

Tuned <10% false positive rate

If it doesn't page, make it a ticket. If it's noise, delete it.

HANDOFF CHECKLIST

✓ Active incidents briefed→

✓ Recent deployments noted→

✓ Pending changes flagged→

✓ Known issues documented→

✓ Contact info verified→

BURNOUT PREVENTION

SIGN INTERVENTION

Dreading shifts Review alert load

Constant fatigue Extend rotation gaps

Cynicism Pair with supportive peer

Avoidance Temporary rotation break

CONTINUOUS IMPROVEMENT

Weekly: Review noisy alerts, tune or delete→

Monthly: On-call retrospective→

Quarterly: Rotation structure review→

Sustainable On-Call

Great on-call is boring on-call. Fix the system, not the people.

Bot Army Engineering | Three Ways of DevOps Sources: Phoenix Project, DevOps Handbook, Unicorn Project People & Culture

Three Ways of DevOps
Flow, Feedback, and Continuous Learning

People & Culture | Technical Operations Excellence

3
CORE PRINCIPLES

4
TYPES OF WORK

5
FIVE IDEALS

2009
DEVOPS MOVEMENT

THE FIRST WAY: FLOW

Optimize for fast left-to-right flow from Development to Operations to
the customer.
"

Make work visible→

Reduce batch sizes→

Reduce handoffs→

Identify and elevate constraints→

Eliminate waste and hardships→

THE SECOND WAY: FEEDBACK

Enable fast and constant right-to-left feedback at every stage."
Create quality at source→

Amplify feedback loops→

Swarm and solve problems→

Push quality closer to source→

Stop the line for defects→

THE THIRD WAY: LEARNING

Create a culture of continual experimentation, learning from success
and failure.
"

Enable organizational learning→

Institutionalize improvement→

Transform local discoveries into global→

Reserve time for improvement→

Create a safe environment to fail→

FOUR TYPES OF WORK

TYPE PRIORITY

Business Projects Strategic value

Internal IT Projects Infrastructure

Changes Maintenance

Unplanned Work Minimize!

FIVE IDEALS (UNICORN PROJECT)

IDEAL MEANING

Locality Teams own end-to-end

Focus & Flow Minimize interruptions

Improvement Daily practice, not events

Safety Safe to experiment and fail

Customer Focus Outcomes over output

ANTI-PATTERNS TO AVOID

ANTI-PATTERN SYMPTOM

Hero Culture Single person knows system

Wall of Confusion Dev throws over to Ops

Ticket Queue Long waits for changes

Change Freeze Fear of deployments

Blamestorming Punishing failures

KEY METRICS ALIGNMENT

WAY KEY METRICS

Flow Lead time, deploy freq

Feedback CFR, MTTR, test coverage

Learning Experiments, postmortems

DEVOPS DEFINITION

DevOps is the outcome of applying the most trusted principles from
physical manufacturing to IT.

- The DevOps Handbook

"

DevOps is a Philosophy

SRE implements DevOps with engineering rigor.

Bot Army Engineering | Team Topologies Sources: Team Topologies (Skelton & Pais), Conway's Law People & Culture

Team Topologies
Organizing Business and Technology Teams

People & Culture | Technical Operations Excellence

4
TEAM TYPES

3
INTERACTION MODES

5-9
IDEAL TEAM SIZE

1968
CONWAY'S LAW

4 FUNDAMENTAL TEAM TYPES

Stream-Aligned Team

Aligned to a single stream of work (product, feature, service)

Platform Team

Provides internal services to reduce cognitive load

Enabling Team

Helps stream-aligned teams adopt new capabilities

Complicated-Subsystem Team

Deep expertise for complex components

3 INTERACTION MODES

MODE WHEN TO USE

Collaboration Discovery, rapid innovation

X-as-a-Service Clear API, reduce cognitive load

Facilitating Coaching, capability building

Warning: Collaboration is expensive; use sparingly

CONWAY'S LAW

Inverse Conway Maneuver: Design teams to get the

architecture you want

Organizations design systems that mirror their own communication
structure.

- Melvin Conway, 1968

"

COGNITIVE LOAD TYPES

TYPE DEFINITION

Intrinsic Inherent problem complexity

Extraneous Environmental/tooling noise

Germane Valuable learning investment

TEAM TYPE DISTRIBUTION

TYPE TYPICAL RATIO

Stream-Aligned 60-80%

Platform 10-15%

Enabling 5-10%

Complicated-Subsystem 0-5%

Stream-aligned should always be the majority

PLATFORM TEAM PRINCIPLES

Self-service: Teams can provision without tickets→

Paved roads: Easy path for 80% use cases→

Optional: Not mandated, but compelling→

Thin interface: Hide complexity behind APIs→

Product mindset: Treat teams as customers→

SRE TEAM MODELS

MODEL TOPOLOGY

Centralized SRE Enabling + Platform hybrid

Embedded SRE Part of Stream-Aligned

Hybrid Core platform + consulting

DUNBAR'S NUMBER

GROUP SIZE

Close team 5-9 people

Trust group 15 people

Clan/tribe 50 people

Max relationships 150 people

Teams Over Individuals

Minimize cognitive load, maximize flow.

Bot Army Engineering | Industry Leaders Sources: Google SRE, Netflix, DORA, HRO Research Industry Leaders

Industry Leaders
Lessons from Google, Netflix, NASA & Beyond

Industry Leaders | Technical Operations Excellence

50%
GOOGLE ENG CAP

100s
NETFLIX DEPLOYS/DAY

5
HRO PRINCIPLES

6
AWS PILLARS

GOOGLE SRE PRINCIPLES

PRINCIPLE APPLICATION

50% Rule Max 50% time on ops/toil

Error Budgets Balance reliability vs velocity

SLO-based Objective reliability targets

Blameless Focus on systems, not people

class SRE implements interface DevOps"

NETFLIX CHAOS ENGINEERING

"Avoid failure by failing constantly"

TOOL WHAT IT DOES

Chaos Monkey Randomly kills instances

Latency Monkey Injects network delays

Chaos Gorilla Simulates AZ failure

2014 AWS outage: 10% of servers affected; Netflix ran uninterrupted

SRE EVOLUTION

ERA PERIOD FOCUS

Chaos Years 1990-2005 Cowboy ops

DevOps 2005-2015 Automation

SRE 2014-2018 Reliability

Platform 2018-Now Developer UX

TOOL EVOLUTION

2000s: Nagios, Puppet, Chef→

2010s: Docker, K8s, Prometheus, Terraform→

2020s: OpenTelemetry, GitOps, AI/ML Ops→

INDUSTRY BEST PRACTICES

COMPANY KEY CONTRIBUTION

Amazon Well-Architected (6 pillars)

Meta Production Eng, SEV culture

Spotify Squads/Tribes, golden paths

Toyota Kaizen, Jidoka, JIT

MISSION-CRITICAL LESSONS

INDUSTRY LESSON

NASA Checklists, redundancy, simulation

Aviation Crew resource mgmt, near-miss analysis

Nuclear Defense in depth, safety culture

Finance Ultra-low latency, compliance

HIGH-RELIABILITY ORGS

5 principles from aviation, nuclear, healthcare:

See HRO Pattern Recognition for deep dive

Preoccupation with Failure→

Reluctance to Simplify→

Sensitivity to Operations→

Commitment to Resilience→

Deference to Expertise→

KEY TAKEAWAYS

Automate everything: Eliminate manual toil→

Embrace failure: Practice makes resilient→

Measure what matters: SLOs drive decisions→

Culture first: Blameless enables learning→

Learn from the Best

Adopt practices, not just tools.

Bot Army Engineering | Implementation Roadmap Foundation → Reliability → Automation → Intelligence → Excellence Strategic Roadmap

Implementation Roadmap
5-Phase Journey to AI-Native Operations

Strategic Roadmap | Technical Operations Excellence

5
PHASES

12
MONTHS

90%
AUTO-RESOLUTION GOAL

99.9%
AVAILABILITY TARGET

PHASE 1: FOUNDATION (MONTH 1-2)

Objective: Establish core operational capabilities

Metrics: Alerting live, <15m MTTA, top 10 runbooks

Deploy Grafana Alerting→

Implement PagerDuty integration→

Create incident response playbooks→

Build runbook automation framework→

Establish on-call rotation→

PHASE 2: RELIABILITY (MONTH 3-4)

Objective: Achieve target SLOs and error budget governance

Metrics: 99.0% availability, 95% success rate

Error budget dashboard & automation→

Post-mortem workflow automation→

Feature flags infrastructure→

First chaos engineering GameDay→

Canary deployment pipeline→

PHASE 3: AUTOMATION (MONTH 5-6)

Objective: Reduce toil below 50%, increase auto-resolution

Metrics: 70% auto-resolution, toil <50%

Automated incident triage→

Self-healing runbooks (top 5 alerts)→

Capacity auto-scaling→

Compliance automation→

PHASE 4: INTELLIGENCE (MONTH 7-8)

Objective: Predictive operations and AIOps

Metrics: 80% 48hr prediction accuracy, 50% MTTR reduction

Anomaly detection ML models→

Predictive capacity alerting→

Automated root cause analysis→

AI-powered post-mortem generation→

PHASE 5: EXCELLENCE (MONTH 9-12)

Objective: World-class operations, continuous improvement

Metrics: 99.9% availability, <30s MTTA, 90% auto-resolution

Cloud migration enablement (AWS/GCP)→

Multi-region resilience→

Full OpenTelemetry instrumentation→

Autonomous operations (zero-touch)→

SUCCESS METRICS JOURNEY

METRIC START END

Availability 95% 99.9%

MTTA Hours <30s

Auto-Resolution 0% 90%

Toil >80% <30%

BOT ARMY OWNERS

BOT PRIMARY RESPONSIBILITY

Ops Bot Incident response, runbooks

SRE Bot Resilience, deployments

Observability Bot Metrics, alerting, dashboards

Security Bot Compliance, secrets

KEY MILESTONES

Month 2: First PagerDuty alert fired→

Month 4: First GameDay completed→

Month 6: Self-healing runbooks active→

Month 8: AI-powered RCA deployed→

Month 12: Autonomous operations→

From Reactive to Autonomous

12 months to world-class AI-native operations.

Bot Army Engineering | Automation Paradoxes Sources: Bainbridge (1983), Gartner, Human Factors Research Agentic Operations

Automation Paradoxes
Bainbridge's Ironies & Human-Agent Balance

Agentic Operations | Technical Operations Excellence

1983
BAINBRIDGE PAPER

40%
AGENTIC AI MAY FAIL

5-10%
EDGE CASES

M-Shaped
NEW SUPERVISOR ROLE

IRONIES OF AUTOMATION

Automation doesn't eliminate human involvement - it changes

it.

The more advanced automation becomes, the more crucial human
intervention becomes when it fails.

- Lisanne Bainbridge (1983)

"

THE FOUR IRONIES

IRONY DESCRIPTION

Skill Degradation Operators lose skills they don't practice

Harder Failures
Automation handles easy cases, leaves hard

ones

Lost Situational

Awareness
Out-of-the-loop syndrome

Increased Criticality
When intervention needed, stakes are

highest

SRE AUTOMATION SPECTRUM

LEVEL HUMAN ROLE BOT ROLE

Manual All decisions None

Assisted Decides Suggests

Supervised Approves Executes

Monitored Watches Autonomous

Autonomous Reviews post-hoc Full control

MAINTAINING HUMAN EXPERTISE

Wheel of Misfortune: Practice manual interventions→

GameDays: Disable automation, respond manually→

Shadow mode: Watch bot decisions before approval→

Runbook reviews: Understand what bots do→

HUMAN-AGENT BALANCE

Low Risk: Full Autonomy

Routine tasks, easily reversible, well-understood

Medium Risk: Supervised

Complex tasks, human approval required

High Risk: Human-in-Loop

Critical systems, irreversible actions

EDGE CASE PROBLEM

SCENARIO CHALLENGE

Novelty Bot hasn't seen this before

Ambiguity Multiple valid actions

Conflict Competing objectives

Context Missing business knowledge

5-10% of cases need human judgment - but they're the hardest

M-SHAPED SUPERVISORS

The new human role: oversee multiple specialized bots

Broad awareness across domains→

Deep expertise for intervention→

Strategic decision-making→

Exception handling→

WARNING SIGNS

Complacency: "The bot handles it"→

Skill atrophy: "I forgot how to do that"→

Blind trust: "The bot must be right"→

Augment, Don't Replace

The best automation makes humans more capable, not irrelevant.

Bot Army Engineering | SRE Evolution Timeline Sources: Google SRE, DORA Research, DevOps History Historical Perspective

SRE Evolution Timeline
From Sysadmin to Platform Engineering

Historical Perspective | Technical Operations Excellence

60+
YEARS OF EVOLUTION

2003
SRE BORN AT GOOGLE

182x
ELITE DEPLOY FREQ

2018
PLATFORM ENG ERA

THE ERAS OF OPERATIONS

ERA PERIOD CHARACTERISTICS

Pre-History 1960-1990 Mainframes, UNIX

Chaos Years 1990-2005 Cowboy ops, silos

DevOps 2005-2015 Automation, CI/CD

SRE 2014-2018 Error budgets, SLOs

Platform 2018-Now Golden paths, DX

ROLE EVOLUTION

Sysadmin → DevOps → SRE → Platform Engineer

ROLE FOCUS

Sysadmin Manual operations

DevOps Engineer Automation, culture

SRE Reliability engineering

Platform Engineer Developer experience

TOOL EVOLUTION

DECADE TOOLS

2000s Nagios, Puppet, Chef

2010s Docker, K8s, Prometheus, Terraform

2020s OpenTelemetry, GitOps, AI/ML Ops

KEY MILESTONES

2003: Ben Treynor coins "SRE" at Google→

2009: Flickr "10+ deploys/day" talk→

2013: Docker released→

2016: Google SRE Book published→

2018: DORA "Accelerate" published→

DORA METRICS EVOLUTION

LEVEL DEPLOY FREQ LEAD TIME

Low Monthly-6mo 6+ months

Medium Weekly-Monthly 1-6 months

High Daily-Weekly 1 week-1mo

Elite Multiple/day <1 day

Elite: 182x more deploys, 2,293x faster MTTR

PLATFORM ENGINEERING

Golden Paths

Paved roads for common workflows

Internal Developer Platforms

Self-service infrastructure

Developer Experience

Reduce cognitive load

SRE CAREER PATHS

IC TRACK MANAGEMENT TRACK

SRE -

Senior SRE SRE Manager

Staff SRE SRE Director

Principal SRE VP Engineering

THE DEFINITION

"class SRE implements interface DevOps"

- Ben Treynor, Google

"

What's Next?

AI-native operations and autonomous systems.

